An experimental and numerical investigation was carried out to explore the effects of four vortex generators (VG) on the onset of flow instabilities, the paths and characteristics of the induced coherent counter-rotating vortices at a Reynolds number Re ≈ 2000. The flow field around the VG was characterized using a smoke visualization technique and simulated numerically using Reynolds-averaged Navier-Stokes (RANS). The taper angle of the VG was varied based on the used tab geometries, including triangular, trapezoidal, and rectangular tabs, which shared the same height, inclination angle, and base width. The results reveal that each VG was able to generate a counter-rotating vortex pair (CVP), and that the taper angle has direct effects on the path of the CVP, the onset location of Kelvin–Helmholtz (K-H) instabilities, and the circulation strength of the vortex structures. Furthermore, a linear relation between VG taper angle and the onset of instability was observed experimentally. Before the onset of K–H instability, the path of the CVP in the wake of a VG can be predicted using a pseudo-viscous model, which was validated numerically and experimentally.

References

1.
Dong
,
S.
, and
Meng
,
H.
,
2004
, “
Flow Past a Trapezoidal Tab
,”
J. Fluid Mech.
,
510
, pp.
219
242
.
2.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
,
1997
, “
Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions With the Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
14
(
3
), pp.
231
242
.
3.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
880
885
.
4.
Gretta
,
W. J.
,
1990
, “
An Experimental Study of the Fluid Mixing Effects and Flow Structure Due to a Surface Mounted Passive Vortex Generating Device
,” MS thesis, Lehigh University, Bethlehem, PA.
5.
Gretta
,
W. J.
, and
Smith
,
C. R.
,
1993
, “
The Flow Structure and Statistics of a Passive Mixing Tab
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
255
263
.
6.
Yang
,
W.
,
Meng
,
H.
, and
Sheng
,
J.
,
2001
, “
Dynamics of Hairpin Vortices Generated by a Mixing Tab in a Channel Flow
,”
Exp. Fluids
,
30
(
6
), pp.
705
722
.
7.
Habchi
,
C.
,
Lemenand
,
T.
,
Valle
,
D. D.
, and
Peerhossaini
,
H.
,
2010
, “
On the Correlation Between Vorticity Strength and Convective Heat Transfer
,”
ASME
Paper No. IHTC14-22269.
8.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.
9.
Pearcey
,
H. H.
,
1961
,
Boundary Layer and Flow Control Vol. 2: Shock Induced Separation and Its Prevention by Design and Boundary-Layer Control
,
Pergamon Press
,
New York
, pp.
1166
1344
.
10.
Lin
,
J. C.
,
2002
Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation
,”
Prog. Aerosp. Sci.
,
38
(
4
), pp.
389
420
.
11.
Habchi
,
C.
,
Lemenand
,
T.
,
Valle
,
D. D.
, and
Peerhossaini
,
H.
,
2010
, “
Turbulence Behavior of Artificially Generated Vorticity
,”
J. Turbul.
,
27
(
36
), pp.
1
28
.
12.
Jones
,
J. P.
,
1955
, “
The Calculation of the Paths of Vortices From a System of Vortex Generators, and a Comparison With Experiment
,” Aeronautical Research Council, London, Report No. ARC-CP-361.
13.
Sarpkaya
,
T.
, and
Henderson
,
D. O.
,
1984
, “
Surface Disturbances Due to Trailing Vortices
,” Naval Postgraduate School, Monterey, CA,
Report No. NPS-69-84-004
.
14.
Lögdberg
,
O.
,
Fransson
,
J. H. M.
, and
Alfredsson
,
H. P.
,
2009
, “
Streamwise Evolution of Longitudinal Vortices in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
623
, pp.
27
58
.
15.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2007
,
Vorticity and Vortex Dynamics
,
Springer Science & Business Media
,
New York
, pp.
383
446
.
16.
Currie
,
I. G.
,
2003
,
Fundamental Mechanics of Fluids
,
Taylor & Fancis Group
,
Boca Raton, FL
, Chap. 2.
17.
Bathchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
New York
, pp.
507
588
.
18.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.
19.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
20.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
108
123
.
21.
Roy
,
P.
,
Anand
,
N. K.
, and
Donzis
,
D.
,
2015
, “
A Parallel Multigrid Finite-Volume Solver on a Collocated Grid for Incompressible Navier–Stokes Equations
,”
Numer. Heat Transfer B
,
67
(
5
), pp.
376
409
.
22.
Drazin
,
P. Z.
,
2002
,
Introduction to Hydrodynamics Stability
,
Cambridge University Press
,
New York
, pp.
45
62
.
23.
Zhu
,
J. X.
,
Fiebig
,
M.
, and
Mitra
,
N. K.
,
1993
, “
Comparison of Numerical and Experimental Results for a Turbulent Flow Field With a Longitudinal Vortex Pair
,”
ASME J. Fluids Eng.
115
(
2
), pp.
270
274
.
24.
Elavarasa
,
R.
, and
Meng
,
H.
,
2000
, “
Flow Visualization Study of Role of Coherent Structures in a Tab Wake
,”
Fluid Dyn. Res.
,
27
(
3
), pp.
183
197
.
You do not currently have access to this content.