Currently, the surgical procedure followed by the majority of cardiac surgeons to address right ventricular dysfunction is the Fontan procedure, which connects the superior vena cava and inferior vena cava (IVC) directly to the left and right pulmonary arteries (LPA and RPA, respectively) bypassing the right atrium. The goal of this study is to develop a patient-specific four-way connector to bypass the dysfunctional right ventricle and augment the pulmonary circulation. The four-way connector was intended to channel the blood flow from the inferior and superior vena cava directly to the RPA and LPA. By creating a connector with proper hemodynamic characteristics, one can control the jet flow interactions between the inferior and superior vena cava and streamline the flow toward the RPA and LPA. The focus for this study was on creating a system that could identify the optimal configuration for the four-way connector for patients from 0 to 20 years of age. A platform was created in ANSYS that utilized the design of experiments (DOE) function to minimize power-loss and blood damage propensity in the connector based on junction geometries. It was confirmed that as the patient's age and artery size change, the optimal size and shape of the connector also changes. However, the corner radius did not decrease at the same rate as the opening diameters. However, it was found that power losses within the connector decrease, and average and maximum blood traversal time through the connector increased for increasing opening radius.

References

1.
American Heart Association,
2016
, “
Executive Summary: Heart Disease and Stroke Statistics-2015 Update
,” American Heart Association, Inc., Dallas, TX, pp. 434–441.
2.
Hsu
,
D. T.
, and
Pearson
,
G. D.
,
2009
, “
Heart Failure in Children—Part 1: History, Etiology, and Pathophysiology
,” American Heart Association, Dallas, TX.
3.
Throcknorton
,
A. L.
,
Lopez-Isaza
,
S.
,
Downs
,
E. A.
,
Chopski
,
S. G.
,
Gangemi
,
J. J.
, and
Moskowitz
,
W.
,
2013
, “
A Viable Therapeutic Option: Mechanical Cirgulatory Support of the Failing Fontan Physiology
,”
Pediatric Cardiol.
,
34
(
6
), pp.
1357
1365
.
4.
d'Udekem
,
Y.
,
Iyengar
,
A. J.
,
Cochrane
,
A. D.
,
Grigg
,
L. E.
,
Ramsay
,
J. M.
,
Wheaton
,
G. R.
,
Penny
,
D. J.
, and
Brizard
,
C. P.
,
2007
, “
The Fontan Procedure: Contemporary Techniques Have Improved Long-Term Outcomes
,”
Circulation
,
116
(11 Suppl.), pp.
1157
1164
.https://www.ncbi.nlm.nih.gov/pubmed/17846297
5.
Be'eri
,
E.
,
Maier
,
S. E.
,
Landzberg
,
M. J.
,
Chung
,
T.
, and
Geva
,
T.
,
1998
, “
In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging
,”
Circulation
,
98
(
25
), pp.
2873
2882
.
6.
Lemler
,
M. S.
,
Scott
,
W. A.
,
Leonard
,
S. R.
,
Stromberg
,
D.
, and
Ramaciotti
,
C.
,
2002
, “
Fenestration Improves Clinical Outcome Fo the Fontan Procedure
,”
Circulation
,
105
(
2
), pp.
207
212
.
7.
Heiden, K., 2017,
Congenital Heart Defects, Simplified
, 1st ed., Midwest EchoSolutions, p. 50.
8.
Soerensen
,
D. D.
,
Pekkan
,
K.
,
de Zélicourt
,
D.
,
Sharma
,
S.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A. P.
,
2007
, “
Introduction of a New Optimized Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
,
83
(
6
), pp.
2182
2190
.
9.
Marsden
,
A. L.
,
Bernstein
,
A. J.
,
Reddy
,
M. V.
,
Shadden
,
S. C.
,
Spilker
,
R. L.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2009
, “
Evaluation of a Novel Y-Shaped Extracardiac Fontan Baffle Using Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
2
), pp.
394
403
.
10.
Jagani
,
J.
, and
Untaroiu
,
A.
,
2016
, “
A Study of TCPC-Stent Conjunction for Cavopulmonary Assist in Fontan Patients With Right Venticular Dysfunction
,”
ASME
Paper No. IMECE2016-68760.
11.
Untaroiu, A., and Jagani, J., 2016, “
Dual Propeller Micro-Pump and TCPC Smart Connector for Superior Hemodynamics and Cavopulmonary Support
,” vtip, accessed May 26, 2018, http://vtip.technologypublisher.com/technology/23053
12.
Kutty
,
S.
,
Li
,
L.
,
Hasan
,
R.
,
Peng
,
Q.
,
Rangamani
,
S.
, and
Danford
,
D. A.
,
2014
, “
Systemic Venous Diameters, Collapsibility Indices, and Right Atrial Measurements in Normal Pediatric Subjects
,”
J. Am. Soc. Echocardiography
,
27
(
2
), pp.
155
162
.
13.
Knobel
,
Z.
,
Kellenberger
,
C. J.
,
Kaiser
,
T.
,
Albisetti
,
M.
,
Bergstrasser
,
E.
, and
Valsangiacomo Buechel
,
E. R.
,
2011
, “
Geometry and Dimensions of the Pulmonary Artery Bifurcation in Children and Adolescents: Assessment In Vivo by Contrast-Enhanced MR-Angiography
,”
Int. J. Cardiovasc. Imaging
,
27
(
3
), pp.
385
396
.
14.
Salim
,
M. A.
,
DiSessa
,
T. G.
,
Arheart
,
K. L.
, and
Alpert
,
B. S.
, 1995, “
Contribution of Superior Vena Caval Flow to Total Cardiac Output in Children
,”
Circulation
,
92
(7), pp. 1860–1865.https://www.ncbi.nlm.nih.gov/pubmed/7671370
15.
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Lightner
,
A. L.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2004
, “
Blood Flow Conditions in the Proximal Pulmonary Arteries and Vena Cavae: Healthy Children During Upright Cycling Exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
2
), pp.
H921
H926
.
16.
Ovroutski
,
S.
,
Nordmeyer
,
S.
,
Miera
,
O.
,
Ewert
,
P.
,
Klimes
,
K.
,
Kuhne
,
T.
, and
Berger
,
F.
,
2012
, “
Caval Flow Reflects Fontan Hemodynamics: Quantification by Magnetic Resonance Imaging
,”
Clin. Res. Cardiol.
,
101
(
2
), pp.
133
138
.
17.
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2005
, “
Prozimal Pulmonary Artery Blood Flow Characteristics in Healthy Subjects Measured in an Upright Posture Using MRI: The Effects of Exercise and Age
,”
J. Magn. Reson. Imaging
,
21
(
6
), pp.
752
758
.
18.
Appleton
,
C. P.
,
Hatle
,
L. K.
, and
Popp
,
R. L.
,
1987
, “
Superior Vena Cava and Hepatic Vein Doppler Enchocardiography in Healthy Adults
,”
JACC
,
10
(
5
), pp.
1032
1039
.
19.
Wexler
,
L.
,
Bergel
,
D. H.
,
Gabe
,
I. T.
,
Makin
,
G. S.
, and
Mills
,
C. J.
,
1968
, “
Velocity of Blood Flow in Normal Human Venae Cavae
,”
Circ. Res.
,
23
(
3
), pp.
349
359
.
20.
Kovacs
,
G.
,
Berghold
,
A.
,
Scheidl
,
S.
, and
Olschewski
,
H.
,
2009
, “
Pulmonary Arterial Pressure During Rest and Exercise in Healthy Subjects: A Systematic Review
,”
Eur. Respir. J.
,
34
(
4
), pp.
888
894
.
21.
Rowe
,
R. D.
, and
James
,
L. S.
,
1957
, “
The Normal Pulmonary Arterial Pressure During the First Year of Life
,”
J. Pediatr.
,
51
(
1
), pp.
1
4
.
22.
Fowler
,
N. O.
,
Westcott
,
R. N.
, and
Scott
,
R. C.
,
1953
, “
Normal Pressure in the Right Heart and Pulmonary Artery
,”
Am. Heart J.
,
46
(
2
), pp.
264
267
.
23.
Lakatta
,
E. G.
,
Mitchell
,
J. H.
,
Pomerance
,
A.
, and
Rowe
,
G. G.
,
1987
, “
Characteristics of Specific Cardiovascular Disorders in the Elderly, Human Aging: Changes in Structure and Function
,”
JACC
,
10
(
2
), pp.
42A
47A
.
24.
Wood
,
H. G.
,
Throckmorton
,
A. L.
,
Untaroiu
,
A.
, and
Song
,
X.
,
2005
, “
The Medical Physics of Ventricular Assist Devices
,”
Rep. Prog. Phys.
,
68
(
3
), p.
545
.
25.
Throckmorton, A. L., Untaroiu, A., Lim, D. S., Wood, H. G., and Allaire, P. E., 2007, “
Fluid Force Predictions and Experimental Measurements for a Magnetically Levitated Pediatric Ventricular Assist Device
,”
Artif. Organs
,
31
(5), pp. 359–368.
26.
Untaroiu
,
A.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2009
, “
Numerical Evaluation of Blood Damage in a Magnetically Levitated Heart Pump—Biomed 2009
,”
Biomed. Sci. Instrum.
,
45
, pp.
220
225
.http://europepmc.org/abstract/med/19369766
27.
Untaroiu
,
A.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2008
, “
Implantable Axialflow Blood Pump for Left Ventricular Support
,”
Biomed. Sci. Instrum.
,
44
, pp.
310
315
.
28.
Throckmorton
,
A. L.
, and
Untaroiu
,
A.
,
2008
, “
CFD Analysis of a Mag-Lev Ventricular Assist
,”
ASAIO J.
,
54
(
4
), pp.
423
431
.
29.
Patel
,
S. M.
,
Throckmorton
,
A. L.
,
Untaroiu
,
A.
,
Allaire
,
P. E.
,
Wood
,
H. G.
, and
Olsen
,
D. B.
,
2005
, “
The Status of Failure and Reliability Testing of Artificial Blood Pumps
,”
ASAIO J.
,
51
(
4
), pp.
440
451
.
30.
Acar, E., 2010, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidisc. Optim.
,
42
(6), pp. 879–896.
31.
Marco, N., Desideri, J. A., and Lanteri, S., 1999, “
Multi-Objective Optimization in CFD by Genetic Algorithms
,” INRIA, Report No.
RR-3686
.https://hal.inria.fr/inria-00072983/
32.
SHARCNET, 2018, “
Multi-Objective Genetic Algorithm (MOGA)
,” SAS IP, Inc. Release 17.0.
You do not currently have access to this content.