Trajectory and penetration of elliptical liquid jets emerged into a low-speed crossflow of air are studied. The jets are introduced to the crossflow at different momentum ratios ranging from 1 to 300. The images are analyzed to obtain the trajectories of the outer boundary of the jets for two different aspect ratios. An empirical correlation is proposed for the present injector geometries and for the range of momentum ratio, Weber, and Reynolds numbers used in this study. Finally, a theoretical model for the trajectory of the liquid column for an initially elliptical liquid emerging into a crossflow is presented, and the associated drag coefficients are obtained for a precise trajectory prediction.
Issue Section:
Multiphase Flows
References
1.
Reitz
, R.
, and Bracco
, F.
, 1982
, “Mechanism of Atomization of a Liquid Jet
,” Phys. Fluids
, 25
(10
), pp. 1730
–1742
.2.
Chigier
, N.
, and Reitz
, R. D.
, 1996
, “Regimes of Jet Breakup and Breakup Mechanisms (Physical Aspects)
,” Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Progress in Astronautics and Aeronautics, Vol. 1
, American Institute of Aeronautics and Astronautics
, Reston, VA
, pp. 109
–135
.3.
Tamaki
, N.
, Shimizu
, M.
, Nishida
, K.
, and Hiroyasu
, H.
, 1998
, “Effects of Cavitation and Internal Flow on Atomization of a Liquid Jet
,” Atomization Sprays
, 8
(2
), pp. 179
–197
.4.
Tomotika
, S.
, 1935
, “On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid
,” Proc. Roy. Soc. A
, 150
(870
), pp. 322
–337
.5.
Sterling
, A. M.
, and Sleicher
, C.
, 1975
, “The Instability of Capillary Jets
,” J. Fluid Mech.
, 68
(3
), pp. 477
–495
.6.
Sallam
, K.
, Dai
, Z.
, and Faeth
, G.
, 2002
, “Liquid Breakup at the Surface of Turbulent round Liquid Jets in Still Gases
,” Int. J. Multiphase Flow
, 28
(3
), pp. 427
–449
.7.
Sallam
, K.
, Aalburg
, C.
, and Faeth
, G.
, 2004
, “Breakup of round Nonturbulent Liquid Jets in Gaseous Crossflow
,” AIAA J.
, 42
(12
), pp. 2529
–2540
.8.
Tambe
, S. B.
, Jeng
, S.-M.
, Mongia
, H.
, and Hsiao
, G.
, 2005
, “Liquid Jets in Subsonic Crossflow
,” AIAA
Paper No. 2005-731.9.
Wu
, P.-K.
, Kirkendall
, K. A.
, Fuller
, R. P.
, and Nejad
, A. S.
, 1998
, “Spray Structures of Liquid Jets Atomized in Subsonic Crossflows
,” J. Propulsion Power
, 14
(2
), pp. 173
–182
.10.
Inamura
, T.
, 2000
, “Trajectory of a Liquid Jet Traversing Subsonic Airstreams
,” J. Propul. Power
, 16
(1
), pp. 155
–157
.11.
Iyogun
, C.
, Birouk
, M.
, and Popplewell
, N.
, 2006
, “Trajectory of Water Jet Exposed to Low Subsonic Cross-Flow
,” Atomization Sprays
, 16
(8
), pp. 963
–980
.12.
Rachner
, M.
, Becker
, J.
, Hassa
, C.
, and Doerr
, T.
, 2002
, “Modelling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions
,” Aerosp. Sci. Technol.
, 6
(7
), pp. 495
–506
.13.
Nyantekyi-Kwakye
, B.
, 2011
, “Experimental Examination of Nozzle Geometry on Water Jet in a Subsonic Crossflow
,” Ph.D. thesis, University of Manitoba, Winnipeg, MB, Canada.14.
Herrmann
, M.
, 2010
, “Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,” ASME J. Eng. Gas Turbines Power
, 132
(6
), p. 061506
.15.
Broumand
, M.
, and Birouk
, M.
, 2015
, “A Model for Predicting the Trajectory of a Liquid Jet in a Subsonic Gaseous Crossflow
,” Atomization Sprays
, 25
(10
), pp. 871
–893
.16.
Kasyap
, T.
, Sivakumar
, D.
, and Raghunandan
, B.
, 2009
, “Flow and Breakup Characteristics of Elliptical Liquid Jets
,” Int. J. Multiphase Flow
, 35
(1
), pp. 8
–19
.17.
Rayleigh
, L.
, 1879
, “On the Capillary Phenomena of Jets
,” Proc. R. Soc. London
, 29
(196–199
), pp. 71
–97
.18.
Geer
, J. F.
, and Strikwerda
, J. C.
, 1983
, “Vertical Slender Jets With Surface Tension
,” J. Fluid Mech.
, 135
(1
), pp. 155
–169
.19.
Bechtel
, S.
, Cooper
, J.
, Forest
, M.
, Petersson
, N.
, Reichard
, D.
, Saleh
, A.
, and Venkataramanan
, V.
, 1995
, “A New Model to Determine Dynamic Surface Tension and Elongational Viscosity Using Oscillating Jet Measurements
,” J. Fluid Mech.
, 293
(1
), pp. 379
–403
.20.
Hoyt
, J.
, and Taylor
, J.
, 1978
, “Elliptical Water Jets
,” AIAA J.
, 16
(1
), pp. 85
–87
.21.
Amini-Baziani
, G.
, 2011
, “Instability of Elliptic Liquid Jets
,” Ph.D. thesis, Concordia University, Montréal, QC, Canada.22.
Amini
, G.
, and Dolatabadi
, A.
, 2011
, “Capillary Instability of Elliptic Liquid Jets
,” Phys. Fluids
, 23
(8
), p. 084109
.23.
Amini
, G.
, and Dolatabadi
, A.
, 2012
, “Axis-Switching and Breakup of Low-Speed Elliptic Liquid Jets
,” Int. J. Multiphase Flow
, 42
, pp. 96
–103
.24.
Negeed
, E.-S. R.
, Hidaka
, S.
, Kohno
, M.
, and Takata
, Y.
, 2011
, “Experimental and Analytical Investigation of Liquid Sheet Breakup Characteristics
,” Int. J. Heat Fluid Flow
, 32
(1
), pp. 95
–106
.25.
Sharma
, P.
, and Fang
, T.
, 2014
, “Breakup of Liquid Jets From Non-Circular Orifices
,” Exp. Fluids
, 55
(2
), pp. 1
–17
.26.
Wang
, F.
, and Fang
, T.
, 2015
, “Liquid Jet Breakup for Non-Circular Orifices Under Low Pressures
,” Int. J. Multiphase Flow
, 72
, pp. 248
–262
.27.
Huang
, W.
, dong Liu
, W.
, bin Li
, S.
, xun Xia
, Z.
, Liu
, J.
, and Wang
, Z.-G.
, 2012
, “Influences of the Turbulence Model and the Slot Width on the Transverse Slot Injection Flow Field in Supersonic Flows
,” Acta Astronaut.
, 73
(Suppl. C
), pp. 1
–9
.28.
Huang
, W.
, Liu
, J.
, Jin
, L.
, and Yan
, L.
, 2014
, “Molecular Weight and Injector Configuration Effects on the Transverse Injection Flow Field Properties in Supersonic Flows
,” Aerosp. Sci. Technol.
, 32
(1
), pp. 94
–102
.29.
Huang
, W.
, 2014
, “Design Exploration of Three-Dimensional Transverse Jet in a Supersonic Crossflow Based on Data Mining and Multi-Objective Design Optimization Approaches
,” Int. J. Hydrogen Energy
, 39
(8
), pp. 3914
–3925
.30.
Najafi Marzbali
, S.
, 2011
, “Penetration of Circular and Elliptical Liquid Jets Into Gaseous Crossflow: A Combined Theoretical and Numerical Study
,” Ph.D. thesis
, Concordia University, Montréal, QC, Canada.https://spectrum.library.concordia.ca/981982/31.
Mazallon
, J.
, Dai
, Z.
, and Faeth
, G.
, 1999
, “Primary Breakup of Nonturbulent round Liquid Jets in Gas Crossflows
,” Atomization Sprays
, 9
(3
), pp. 871
–893
.32.
Wu
, P.-K.
, Kirkendall
, K. A.
, Fuller
, R. P.
, and Nejad
, A. S.
, 1997
, “Breakup Processes of Liquid Jets in Subsonic Crossflows
,” J. Propul. Power
, 13
(1
), pp. 64
–73
.33.
Mashayek
, A.
, 2006
, “Experimental and Numerical Study of Liquid Jets in Crossflow
,” Ph.D. thesis, University of Toronto, Toronto, ON, Canada.34.
Zheng
, Y.
, 2009
, “Characterization of the Initial Spray From a Jet in Crossflow
,” Ph.D. thesis
, College Park, MD.https://static1.squarespace.com/static/586d0c87d2b857738595696e/t/586d6d5be6f2e1b4e1988c64/1483566464657/ali_mash_MSc_thesis.pdf35.
Yoon
, H. J.
, Hong
, J. G.
, and Lee
, C.-W.
, 2011
, “Correlations for Penetration Height of Single and Double Liquid Jets in Crossflow Under High-Temperature Conditions
,” Atomization Sprays
, 21
(8
), pp. 673
–686
.36.
Mashayek
, A.
, Jafari
, A.
, and Ashgriz
, N.
, 2008
, “Improved Model for the Penetration of Liquid Jets in Subsonic Crossflows
,” AIAA J.
, 46
(11
), pp. 2674
–2686
.37.
Clark
, M. M.
, 1988
, “Drop Breakup in a Turbulent Flow—I: Conceptual and Modeling Considerations
,” Chem. Eng. Sci.
43
(3
), pp. 671
–679
.Copyright © 2019 by ASME
You do not currently have access to this content.