Abstract

Advances in microfluidics inaugurate a new possibility of designing diagnostic devices for early cancer detection. There is a growing interest in deformation-based microfiltration for capturing circulating tumor cells (CTCs) from peripheral blood due to its simplicity and low cost. Fundamental understanding of CTC passing through a microfilter is critical, as it helps optimize the design for achieving high isolation purity. Previous research has modeled CTC as a simple droplet for deformation-based CTC separation. Here, we use a compound droplet model to study the flow dynamics more realistically. An adaptive-mesh-refinement (AMR) method is used here, using the open-source code, gerris, after modification for droplet dynamics and contact angle model. The developed code is validated with results compared with ansysfluent and available theory. The effects of various parameters such as the nuclear-to-cytoplasmic (N/C) ratio, operating flow rate, and cell viscosity are investigated. It is found that the compound droplet behaves like a homogeneous droplet when the nucleus size is smaller than the filtering channel. However, the pressure profile is greatly influenced by the nucleus when it is larger than the channel size. In addition, there is a linear correlation between the pressure drop in the channel and the operating flow rate. Similarly, critical passing pressure increases linearly with the increase of the cell viscosity. Our study suggests that for having an accurate prediction of cell transport behavior inside the microchannel, it is of great importance to consider the effects of the nucleus and its possible deformation.

References

1.
Liberko
,
M.
,
Kolostova
,
K.
, and
Bobek
,
V.
,
2013
, “
Essentials of Circulating Tumor Cells for Clinical Research and Practice
,”
Crit. Rev. Oncol. Hematol.
,
88
(
2
), pp.
338
356
.10.1016/j.critrevonc.2013.05.002
2.
Autebert
,
J.
,
Coudert
,
B.
,
Bidard
,
F.-C.
,
Pierga
,
J.-Y.
,
Descroix
,
S.
,
Malaquin
,
L.
, and
Viovy
,
J.-L.
,
2012
, “
Microfluidic: An Innovative Tool for Efficient Cell Sorting
,”
Methods
,
57
(
3
), pp.
297
307
.10.1016/j.ymeth.2012.07.002
3.
Aghilinejad
,
A.
,
Aghaamoo
,
M.
, and
Chen
,
X.
,
2019
, “
On the Transport of Particles/Cells in High-Throughput Deterministic Lateral Displacement Devices: Implications for Circulating Tumor Cell Separation
,”
Biomicrofluidics
,
13
(
3
), p.
034112
.10.1063/1.5092718
4.
Dincau
,
B. M.
,
Aghilinejad
,
A.
,
Hammersley
,
T.
,
Chen
,
X.
, and
Kim
,
J.-H.
,
2018
, “
Deterministic Lateral Displacement (DLD) in the High Reynolds Number Regime: High-Throughput and Dynamic Separation Characteristics
,”
Microfluid. Nanofluid.
,
22
(
6
), p.
59
.10.1007/s10404-018-2078-9
5.
Aghaamoo
,
M.
,
Zhang
,
Z. F.
,
Chen
,
X. L.
, and
Xu
,
J.
,
2015
, “
Deformability-Based Circulating Tumor Cell Separation With Conical-Shaped Microfilters: Concept, Optimization, and Design Criteria
,”
Biomicrofluidics
,
9
(
3
), p.
034106
.10.1063/1.4922081
6.
Chang
,
P.
,
Hashem
,
M. A.
,
Chen
,
X.
, and
Tan
,
H.
,
2019
, “
Dynamics of Compound Droplet Passing Through a Conical CTC Microfilter
,”
ASME Paper No. IMECE2019-10519
.10.1115/IMECE2019-10519
7.
Yamada
,
M.
,
Nakashima
,
M.
, and
Seki
,
M.
,
2004
, “
Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel
,”
Anal. Chem.
,
76
(
18
), pp.
5465
5471
.10.1021/ac049863r
8.
Tanaka
,
T.
,
Ishikawa
,
T.
,
Numayama-Tsuruta
,
K.
,
Imai
,
Y.
,
Ueno
,
H.
,
Matsuki
,
N.
, and
Yamaguchi
,
T.
,
2012
, “
Separation of Cancer Cells From a Red Blood Cell Suspension Using Inertial Force
,”
Lab Chip
,
12
(
21
), pp.
4336
4343
.10.1039/c2lc40354d
9.
Zborowski
,
M.
, and
Chalmers
,
J. J.
,
2011
, “
Rare Cell Separation and Analysis by Magnetic Sorting
,”
Anal. Chem.
,
83
(
21
), pp.
8050
8056
.10.1021/ac200550d
10.
Augustsson
,
P.
,
Magnusson
,
C.
,
Nordin
,
M.
,
Lilja
,
H.
, and
Laurell
,
T.
,
2012
, “
Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis
,”
Anal. Chem.
,
84
(
18
), pp.
7954
7962
.10.1021/ac301723s
11.
MacDonald
,
M. P.
,
Spalding
,
G. C.
, and
Dholakia
,
K.
,
2003
, “
Microfluidic Sorting in an Optical Lattice
,”
Nature
,
426
(
6965
), pp.
421
424
.10.1038/nature02144
12.
Aghilinejad
,
A.
,
Aghaamoo
,
M.
,
Chen
,
X.
, and
Xu
,
J.
,
2018
, “
Effects of Electrothermal Vortices on Insulator‐Based Dielectrophoresis for Circulating Tumor Cell Separation
,”
Electrophoresis
,
39
(
5–6
), pp.
869
877
.10.1002/elps.201700264
13.
Aghaamoo
,
M.
,
Aghilinejad
,
A.
, and
Chen
,
X.
,
2017
, “
Numerical Study of Insulator-Based Dielectrophoresis Method for Circulating Tumor Cell Separation
,”
Microfluid., BioMEMS, Med. Microsyst. XV
,
10061
, p.
100611A
.10.1117/12.2260759
14.
Aghaamoo
,
M.
,
Aghilinejad
,
A.
,
Chen
,
X.
, and
Xu
,
J.
,
2019
, “
On the Design of Deterministic Dielectrophoresis for Continuous Separation of Circulating Tumor Cells From Peripheral Blood Cells
,”
Electrophoresis
,
40
(
10
), pp.
1486
1493
.10.1002/elps.201800459
15.
Gossett
,
D. R.
,
Weaver
,
W. M.
,
Mach
,
A. J.
,
Hur
,
S. C.
,
Tse
,
H. T. K.
,
Lee
,
W.
,
Amini
,
H.
, and
Di Carlo
,
D.
,
2010
, “
Label-Free Cell Separation and Sorting in Microfluidic Systems
,”
Anal. Bioanal. Chem.
,
397
(
8
), pp.
3249
3267
.10.1007/s00216-010-3721-9
16.
Denais
,
C. M.
,
Gilbert
,
R. M.
,
Isermann
,
P.
,
McGregor
,
A. L.
,
Te Lindert
,
M.
,
Weigelin
,
B.
,
Davidson
,
P. M.
,
Friedl
,
P.
,
Wolf
,
K.
, and
Lammerding
,
J.
,
2016
, “
Nuclear Envelope Rupture and Repair During Cancer Cell Migration
,”
Science
,
352
(
6283
), pp.
353
358
.10.1126/science.aad7297
17.
Ishikawa
,
T.
,
Fujiwara
,
H.
,
Matsuki
,
N.
,
Yoshimoto
,
T.
,
Imai
,
Y.
,
Ueno
,
H.
, and
Yamaguchi
,
T.
,
2011
, “
Asymmetry of Blood Flow and Cancer Cell Adhesion in a Microchannel With Symmetric Bifurcation and Confluence
,”
Biomed. Microdev.
,
13
(
1
), pp.
159
167
.10.1007/s10544-010-9481-7
18.
Lim
,
C.
,
Zhou
,
E.
, and
Quek
,
S.
,
2006
, “
Mechanical Models for Living Cells—A Review
,”
J. Biomech.
,
39
(
2
), pp.
195
216
.10.1016/j.jbiomech.2004.12.008
19.
Bronzino
,
J. D.
, and
Peterson
,
D. R.
,
2014
,
Biomedical Engineering Fundamentals
,
CRC Press
,
Boca Raton, FL
.
20.
Evans
,
E.
, and
Yeung
,
A.
,
1989
, “
Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipet Aspiration
,”
Biophys. J.
,
56
(
1
), pp.
151
160
.10.1016/S0006-3495(89)82660-8
21.
Evans
,
E.
, and
Kukan
,
B.
,
1984
, “
Passive Material Behavior of Granulocytes Based on Large Deformation and Recovery After Deformation Tests
,”
Blood
,
64
(
5
), pp.
1028
1035
.10.1182/blood.V64.5.1028.1028
22.
Bagnall
,
J. S.
,
Byun
,
S.
,
Begum
,
S.
,
Miyamoto
,
D. T.
,
Hecht
,
V. C.
,
Maheswaran
,
S.
,
Stott
,
S. L.
,
Toner
,
M.
,
Hynes
,
R. O.
, and
Manalis
,
S. R.
,
2015
, “
Deformability of Tumor Cells Versus Blood Cells
,”
Sci. Rep.
,
5
(
1
), p.
18542
.10.1038/srep18542
23.
Leong
,
F. Y.
,
Li
,
Q.
,
Lim
,
C. T.
, and
Chiam
,
K.-H.
,
2011
, “
Modeling Cell Entry Into a Micro-Channel
,”
Biomech. Model. Mechanobiol.
,
10
(
5
), pp.
755
766
.10.1007/s10237-010-0271-1
24.
Zhang
,
Z.
,
Xu
,
J.
,
Hong
,
B.
, and
Chen
,
X.
,
2014
, “
The Effects of 3D Channel Geometry on CTC Passing Pressure–Towards Deformability-Based Cancer Cell Separation
,”
Lab Chip
,
14
(
14
), pp.
2576
2584
.10.1039/C4LC00301B
25.
Zhang
,
Z.
,
Chen
,
X.
, and
Xu
,
J.
,
2015
, “
Entry Effects of Droplet in a Micro Confinement: Implications for Deformation-Based Circulating Tumor Cell Microfiltration
,”
Biomicrofluidics
,
9
(
2
), p.
024108
.10.1063/1.4916645
26.
Dong
,
C.
,
Skalak
,
R.
, and
Sung
,
K.-L. P.
,
1991
, “
Cytoplasmic Rheology of Passive Neutrophils
,”
Biorheology
,
28
(
6
), pp.
557
567
.10.3233/BIR-1991-28607
27.
Hashem
,
M. A.
,
Chen
,
X.
, and
Tan
,
H.
,
2019
, “
An Adaptive Mesh Refinement Based Simulation for Pressure-Deformability Analysis of a Circulating Tumor Cell
,”
Proc. SPIE
,
10875
, p.
108750L.
10.1117/12.2507098
28.
Tsai
,
M. A.
,
Frank
,
R. S.
, and
Waugh
,
R. E.
,
1993
, “
Passive Mechanical Behavior of Human Neutrophils: Power-Law Fluid
,”
Biophys. J.
,
65
(
5
), pp.
2078
2088
.10.1016/S0006-3495(93)81238-4
29.
Zhang
,
X.
,
Hashem
,
M. A.
,
Chen
,
X.
, and
Tan
,
H.
,
2018
, “
On Passing a non-Newtonian Circulating Tumor Cell (CTC) Through a Deformation-Based Microfluidic Chip
,”
Theor. Comput. Fluid Dyn.
,
32
(
6
), pp.
753
764
.10.1007/s00162-018-0475-z
30.
Schmid-Schonbein
,
G.
,
Shih
,
Y. Y.
, and
Chien
,
S.
,
1980
, “
Morphometry of Human Leukocytes
,”
Blood
,
56
(
5
), pp.
866
875
.10.1182/blood.V56.5.866.866
31.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
,
2000
, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
,
269
(
3
), pp.
781
786
.10.1006/bbrc.2000.2360
32.
Luo
,
Z. Y.
,
He
,
L.
, and
Bai
,
B. F.
,
2015
, “
Deformation of Spherical Compound Capsules in Simple Shear Flow
,”
J. Fluid Mech.
,
775
, pp.
77
104
.10.1017/jfm.2015.286
33.
Smith
,
K.
,
Ottino
,
J. M.
, and
de la Cruz
,
M. O.
,
2004
, “
Encapsulated Drop Breakup in Shear Flow
,”
Phys. Rev. Lett.
,
93
(
20
), p.
204501
.10.1103/PhysRevLett.93.204501
34.
Qu
,
X.
, and
Wang
,
Y.
,
2012
, “
Dynamics of Concentric and Eccentric Compound Droplets Suspended in Extensional Flows
,”
Phys. Fluids
,
24
(
12
), p.
123302
.10.1063/1.4770294
35.
Wang
,
J.
,
Xu
,
S.
,
Huang
,
Y.
, and
Guan
,
J.
,
2018
, “
Mechanical Mechanisms of the Directional Shift and Inverse of the Eccentric Compound Droplet
,”
Phys. Fluids
,
30
(
4
), p.
042005
.10.1063/1.5024252
36.
Zhou
,
C.
,
Yue
,
P.
, and
Feng
,
J. J.
,
2008
, “
Deformation of a Compound Drop Through a Contraction in a Pressure-Driven Pipe Flow
,”
Int. J. Multiphase Flow
,
34
(
1
), pp.
102
109
.10.1016/j.ijmultiphaseflow.2007.09.002
37.
Zhang
,
X.
,
Chen
,
X.
, and
Tan
,
H.
,
2017
, “
On the Thin-Film-Dominated Passing Pressure of Cancer Cell Squeezing Through a Microfluidic CTC Chip
,”
Microfluid. Nanofluid.
,
21
(
9
), p.
146
.10.1007/s10404-017-1986-4
38.
Popinet
,
S.
,
2009
, “
An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows
,”
J. Comput. Phys.
,
228
(
16
), pp.
5838
5866
.10.1016/j.jcp.2009.04.042
39.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
40.
Cummins
,
S. J.
,
Francois
,
M. M.
, and
Kothe
,
D. B.
,
2005
, “
Estimating Curvature From Volume Fractions
,”
Comput. Struct.
,
83
(
6–7
), pp.
425
434
.10.1016/j.compstruc.2004.08.017
41.
Aulisa
,
E.
,
Manservisi
,
S.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2007
, “
Interface Reconstruction With Least-Squares Fit and Split Advection in Three-Dimensional Cartesian Geometry
,”
J. Comput. Phys.
,
225
(
2
), pp.
2301
2319
.10.1016/j.jcp.2007.03.015
42.
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2000
, “
Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids
,”
J. Comput. Phys.
,
164
(
1
), pp.
228
237
.10.1006/jcph.2000.6567
43.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.10.1016/S0021-9991(03)00298-5
44.
Khokhlov
,
A. M.
,
1998
, “
Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations
,”
J. Comput. Phys.
,
143
(
2
), pp.
519
543
.10.1006/jcph.1998.9998
45.
Tan
,
H.
,
2016
, “
An Adaptive Mesh Refinement Based Flow Simulation for Free-Surfaces in Thermal Inkjet Technology
,”
Int. J. Multiphase Flow
,
82
, pp.
1
16
.10.1016/j.ijmultiphaseflow.2016.01.001
46.
Tan
,
H.
,
2017
, “
Numerical Study on Splashing of High-Speed Microdroplet Impact on Dry Microstructured Surfaces
,”
Comput. Fluids
,
154
, pp.
142
166
.10.1016/j.compfluid.2017.05.014
47.
Preetha
,
A.
,
Huilgol
,
N.
, and
Banerjee
,
R.
,
2005
, “
Interfacial Properties as Biophysical Markers of Cervical Cancer
,”
Biomed. Pharmacother.
,
59
(
9
), pp.
491
497
.10.1016/j.biopha.2005.02.005
48.
Rejniak
,
K. A.
,
2012
, “
Investigating Dynamical Deformations of Tumor Cells in Circulation: Predictions From a Theoretical Model
,”
Front. Oncol.
,
2
, p.
111
.10.3389/fonc.2012.00111
49.
Marella
,
S. V.
, and
Udaykumar
,
H.
,
2004
, “
Computational Analysis of the Deformability of Leukocytes Modeled With Viscous and Elastic Structural Components
,”
Phys. Fluids
,
16
(
2
), pp.
244
264
.10.1063/1.1629691
50.
Bruus
,
H.
,
2008
,
Theoretical Microfluidics
,
Oxford University Press
,
Oxford, UK
.
51.
Gonzalez-Rodriguez
,
D.
,
Guillou
,
L.
,
Cornat
,
F.
,
Lafaurie-Janvore
,
J.
,
Babataheri
,
A.
,
de Langre
,
E.
,
Barakat
,
A. I.
, and
Husson
,
J.
,
2016
, “
Mechanical Criterion for the Rupture of a Cell Membrane Under Compression
,”
Biophys. J.
,
111
(
12
), pp.
2711
2721
.10.1016/j.bpj.2016.11.001
52.
Raj
,
A.
, and
Sen
,
A.
,
2018
, “
Entry and Passage Behavior of Biological Cells in a Constricted Compliant Microchannel
,”
RSC Adv.
,
8
(
37
), pp.
20884
20893
.10.1039/C8RA02763C
53.
Savin
,
T.
,
Bandi
,
M.
, and
Mahadevan
,
L.
,
2016
, “
Pressure-Driven Occlusive Flow of a Confined Red Blood Cell
,”
Soft Matter
,
12
(
2
), pp.
562
573
.10.1039/C5SM01282A
54.
Aghilinejad
,
A.
,
Landry
,
C.
,
Cha
,
G.
, and
Chen
,
X.
, “
Enhancing the Cell Viability in High Throughput Deterministic Lateral Displacement Separation of Circulating Tumor Cells
,”
ASME Paper No. IMECE2019-10209
.10.1115/IMECE2019-10209
You do not currently have access to this content.