Abstract

Stator corner separation flow existing in the guide-vane domain has significant effects on the characteristics of an axial-flow pump. The objective of this paper is to investigate the vortical structures in stator corner separation flow. Transient numerical simulation with a proof experiment was conducted for an axial-flow pump. Structural features of the vortices and their effects on velocity moment attenuation and pressure fluctuations in the guide-vane domain were analyzed. Horn-like vortices are found in the stator corner separation flow. A full cycle of the horn-like vortex evolution, “inception-growth-development-decay,” is presented. During this transit process, the vortex tube is gradually elongated and deformed, which forms an oblique separation line on the vane suction surface. High velocity moment always exists in the flow passages of the guide-vane domain, and the uniformity of main flows is gradually reduced. Meanwhile, periodic pressure fluctuations arise. The maximum amplitude of pressure fluctuations in the flow passages occurs in the region where the horn-like vortex cores at the “growth” stage lie in, which is approximately 3.39 times higher than that in the vaneless region between the impeller and guide-vane. The dominant frequency of pressure fluctuations in the flow passages is approximately 0.75 times the rotating frequency, which is close to the frequency of the full cycle of the horn-like vortex evolution. Horn-like vortices have remarkable effects on the flow fields, and more attention should be paid to them.

References

References
1.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061101
.10.1115/1.4035876
2.
Liu
,
Y. W.
,
Yan
,
H.
,
Lu
,
L. P.
, and
Li
,
Q. S.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.10.1115/1.4034871
3.
Goltz
,
I.
,
Kosyna
,
G.
,
Stark
,
U.
,
Saathoff
,
H.
, and
Bross
,
S.
,
2003
, “
Stall Inception Phenomena in a Single-Stage Axial-Flow Pump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
217
(
4
), pp.
471
479
.10.1243/095765003322315531
4.
Wu
,
Y. H.
,
Wang
,
B.
,
Fu
,
Y.
, and
Liu
,
J.
,
2017
, “
Research Progress of Corner Separation in Axial-Flow Compressor
,”
Acta Aeronautica ET Astronaut. Sin.
,
38
(
9
), p.
520974
.10.7527/S1000-6893.2017.620974
5.
Dixon
,
S. L.
,
Eng
,
B.
, and
Hall
,
C. A.
,
2014
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed.,
Elsevier
,
Butterworth-Heinemann, UK
.
6.
Zhang
,
D. S.
,
2010
, “
Theoretical Analysis and Experimental Investigation of Non-Linear Circulation Distribution in Axial-Flow Pump Impeller
,” Ph.D. dissertation,
Jiangsu University
, Zhenjiang, China.
7.
Zhang
,
D. S.
,
Geng
,
L. L.
,
Shi
,
W. D.
,
Pan
,
D. Z.
, and
Wang
,
H. Y.
,
2015
, “
Experimental Investigation on Pressure Fluctuation and Vibration in Axial-Flow Pump Model
,”
Trans. Chin. Soc. Agric. Mach.
,
46
(
6
), pp.
66
72
.10.6041/j.issn.1000-1298.2015.06.010
8.
He
,
C. L.
,
Zhang
,
Y. Y.
,
Zhang
,
J. X.
, and
Zhang
,
C.
,
2018
, “
Pump System Model Test Report of Yanguan Drainage Pumping Station
,” China Water Beifang Investigation, Design and Research Co. Ltd., Tianjin, China.
9.
He
,
C. L.
,
Zhang
,
Y. Y.
,
Zhang
,
J. X.
, and
Zhang
,
C.
,
2018
, “
Pump System Model Test Report of Yaojiang Diversion Pumping Station
,” China Water Beifang Investigation, Design and Research Co. Ltd., Tianjin, China.
10.
He
,
C. L.
,
Zhang
,
Y. Y.
,
Zhang
,
J. X.
, and
Zhang
,
C.
,
2018
, “
Pump System Model Test Report of Babao Drainage Pumping Station
,” China Water Beifang Investigation, Design and Research Co. Ltd, Tianjin, China.
11.
Wang
,
F. J.
,
Zhang
,
L.
, and
Zhang
,
Z. M.
,
2007
, “
Analysis on Pressure Fluctuation of Unsteady Flow in Axial-Flow Pump
,”
J. Hydraulic Eng.
,
38
(
8
), pp.
1003
1009
.10.3321/j.issn:0559-9350.2007.08.019
12.
Qi
,
L. Y.
,
Zhang
,
Y. Y.
, and
Zhang
,
G. Y.
,
2017
, “
Model Test and Analysis of Pump System of Miyun Reservoir Regulation and Storage Project of Incoming Water From South-to-North Transfer Project
,”
Yellow River
,
39
(
6
), pp.
133
137
.10.3969/j.issn.1000-1379.2017.06.031
13.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardin
,
L. W.
, and
Wagner
,
J. H.
,
1982
, “
Turbine Rotor-Stator Interaction
,”
ASME J. Eng. Power
,
104
(
4
), pp.
729
742
.10.1115/1.3227339
14.
Pacot
,
O.
,
Kato
,
C.
,
Guo
,
Y.
,
Yamade
,
Y.
, and
Avellan
,
F.
,
2016
, “
Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111102
.10.1115/1.4033423
15.
Tan
,
D.
,
Li
,
Y. C.
,
Wilkes
,
I.
,
Vagnoni
,
E.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2015
, “
Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111301
.10.1115/1.4030614
16.
Chen
,
E. Y.
,
Ma
,
Z. L.
,
Zhao
,
G. P.
,
Li
,
G. P.
,
Yang
,
A. L.
, and
Nan
,
G. F.
,
2016
, “
Numerical Investigation on Vibration and Noise Induced by Unsteady Flow in an Axial-Flow Pump
,”
J. Mech. Sci. Technol.
,
30
(
12
), pp.
5397
5404
.10.1007/s12206-016-1107-4
17.
Kan
,
K.
,
Zheng
,
Y.
,
Chen
,
Y. J.
,
Xie
,
Z. S.
,
Yang
,
G.
, and
Yang
,
C. X.
,
2018
, “
Numerical Study on the Internal Flow Characteristics of an Axial-Flow Pump Under Stall Conditions
,”
J. Mech. Sci. Technol.
,
32
(
10
), pp.
4683
4695
.10.1007/s12206-018-0916-z
18.
Wang
,
H.
, and
Tsukamoto
,
H.
,
2001
, “
Fundamental Analysis on Rotor-Stator Interaction in a Diffuser Pump by Vortex Method
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
737
44
.10.1115/1.1413242
19.
Xu
,
H.
,
Wang
,
M. Y.
,
Jin
,
D. H.
,
Sun
,
D. K.
,
Gui
,
X. M.
, and
Sun
,
X. F.
,
2017
, “
Experimental Investigation of the Wake Decay Process in an Axial Pump With Varied Rotor-Stator Axial Spacings
,”
ASME
Paper No. FEDSM2017-69044. 10.1115/FEDSM2017-69044
20.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
21.
Hah
,
C.
, and
Loellbach
,
J.
,
1999
, “
Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
121
(
1
), pp.
67
77
.10.1115/1.2841235
22.
Yan
,
H.
,
Liu
,
Y. W.
,
Li
,
Q. S.
, and
Lu
,
L. P.
,
2018
, “
Turbulence Characteristics in Corner Separation in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
75
, pp.
139
154
.10.1016/j.ast.2018.01.015
23.
Marsan
,
A.
,
Trebinjac
,
I.
,
Coste
,
S.
, and
Leroy
,
G.
,
2015
, “
Influence of Unsteadiness on the Control of a Hub-Corner Separation Within a Radial Vaned Diffuser
,”
ASME J. Turbomach.
,
137
(
2
), p.
021008
.10.1115/1.4028244
24.
Akcayoz
,
E.
,
Vo
,
H. D.
, and
Mahallati
,
A.
,
2016
, “
Controlling Corner Stall Separation With Plasma Actuators in a Compressor Cascade
,”
ASME J. Turbomach.
,
138
(
8
), p.
081008
.10.1115/1.4032675
25.
Li
,
J.
, and
Ji
,
L.
,
2019
, “
Efficient Design Method for Applying Vortex Generators in Turbomachinery
,”
ASME J. Turbomach.
,
141
(
8
), p.
081005
.10.1115/1.4042990
26.
Durbin
,
P. A.
,
2018
, “
Some Recent Developments in Turbulence Closure Modeling
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
77
103
.10.1146/annurev-fluid-122316-045020
27.
Liu
,
N.
,
Wang
,
Y. S.
, and
Zhang
,
G.
,
2006
,
Pump Model Test for South-to-North Water Diversion Project
,
China Water and Power Press
,
Beijing, China
.
28.
Eltard
,
L. B.
, and
Fuhrman
,
D. R.
,
2018
, “
On the Over-Production of Turbulence Beneath Surface Waves in Reynolds-Averaged Navier-Stokes Models
,”
J. Fluid Mech.
,
853
, pp.
419
460
.10.1017/jfm.2018.57
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
30.
Liu
,
C. Q.
,
Wang
,
Y. Q.
,
Yang
,
Y.
, and
Duan
,
Z. W.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys., Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
31.
Tian
,
S. L.
,
Gao
,
Y. S.
,
Dong
,
X. R.
, and
Liu
,
C. Q.
,
2018
, “
A Definition of Vortex Vector and Vortex
,”
J. Fluid Mech.
,
849
, pp.
312
339
.10.1017/jfm.2018.406
You do not currently have access to this content.