Abstract

The gas content is one of the important factors in cavitation, which may increase the pressure inside the cavity through the diffusive mass transfer of the dissolved gas into the cavity. In the present study, we try to directly measure the cavity pressure inside the sheet cavity at the throat of a converging-diverging nozzle. Then the influences of the flow velocity and the gas content (amount of dissolved oxygen) on the gas partial pressure are investigated. It is found that, even in low gas content level, the cavity pressure is slightly but apparently higher than the saturated vapor pressure, indicating the presence of gas partial pressure. It is observed that the gas partial pressure in significantly developed cavitation is almost constant regardless of the flow velocity but slightly increases against the increase of the saturation level of dissolved gas. It is also found that the gas partial pressure inside cavity depends on the degree of cavitation development; the gas partial pressure decreases with the development of cavitation.

References

1.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford, UK
.
2.
ISO (International Organization for Standardization)
,
1987
,
Centrifugal, Mixed Flow and Axial Pumps — Code for Hydraulic Performance Tests — Precision Grade
,
ISO
, Geneva, Switzerland, Standard No. ISO5198: 1987.
3.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Oxford University Press
,
Oxford, UK and Concepts ETI, Vermont
.
4.
Tsuru
,
W.
,
Konishi
,
T.
,
Watanabe
,
S.
, and
Tsuda
,
S.
,
2017
, “
Observation of Inception of Sheet Cavitation From Free Nuclei
,”
J. Therm. Sci.
,
26
(
3
), pp.
223
228
.10.1007/s11630-017-0933-8
5.
Amini
,
A.
,
Reclari
,
M.
,
Sano
,
T.
,
Iino
,
M.
,
Dreyer
,
M.
, and
Farhat
,
M.
,
2019
, “
On the Physical Mechanism of Tip Vortex Cavitation Hysteresis
,”
Exp. Fluids
,
60
(
7
), p. 118.
6.
Brennen
,
C. E.
,
1969
, “
The Dynamic Balances of Dissolved Air and Heat in Natural Cavity Flows
,”
J. Fluid Mech.
,
37
(
1
), pp.
115
127
.10.1017/S0022112069000449
7.
Billet
,
M. L.
, and
Weir
,
D. S.
,
1975
, “
The Effect of Gas Diffusion on the Flow Coefficient for a Ventilated Cavity
,”
ASME J. Fluids Eng.
,
97
(
4
), pp.
501
505
.10.1115/1.3448090
8.
Parkin
,
B.
, and
Ravindra
,
K.
,
1991
, “
Convective Gaseous Diffusion in Steady Axisymmetric Cavity Flows
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
285
289
.10.1115/1.2909493
9.
Yu
,
P.-W.
, and
Ceccio
,
S. L.
,
1997
, “
Diffusion Induced Bubble Populations Downstream of a Partial Cavity
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
782
787
.10.1115/1.2819498
10.
Lee
,
I. H.
,
Makiharju
,
S. A.
,
Ganesh
,
H.
, and
Ceccio
,
S. L.
,
2016
, “
Scaling of Gas Diffusion Into Limited Partial Cavities
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051301
.10.1115/1.4031850
11.
Iben
,
U.
,
Wolf
,
F.
,
Freudigmann
,
H. A.
,
Frohlich
,
J.
, and
Heller
,
W.
,
2015
, “
Optical Measurements of Gas Bubbles in Oil Behind a Cavitating Micro-Orifice Flow
,”
Exp. Fluids
,
56
(
6
), p.
114
.10.1007/s00348-015-1979-6
12.
Kowalski
,
K.
,
Pollak
,
S.
,
Skoda
,
R.
, and
Hussong
,
J.
,
2018
, “
Experimental Study on Cavitation-Induced Air Release in Orifice Flows
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061201
.10.1115/1.4038730
13.
Zhou
,
J.
,
Vacca
,
A.
, and
Manhartsgruber
,
B.
,
2013
, “
A Novel Approach for the Prediction of Dynamic Features of Air Release and Absorption in Hydraulic Oils
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091305
.10.1115/1.4024864
14.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
15.
Freudigmann
,
H.
,
Dörr
,
A.
,
Iben
,
U.
, and
Pelz
,
P. F.
,
2017
, “
Modeling of Cavitation-Induced Air Release Phenomena in Micro-Orifice Flows
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111301
.10.1115/1.4037048
16.
Gadd
,
G. E.
, and
Grant
,
S.
,
1965
, “
Some Experiments on Cavities Behind Disks
,”
J. Fluid Mech.
,
23
(
4
), pp.
645
656
.10.1017/S002211206500160X
17.
Washio
,
S.
,
2015
,
Recent Developments in Cavitation Mechanisms, a Guide for Scientists and Engineers
,
Elsevier
, Amsterdam, The Netherlands.
18.
Watanabe
,
S.
,
Enomoto
,
K.
,
Yamamoto
,
Y.
, and
Hara
,
Y.
,
2014
, “
Thermal and Dissolved Gas Effects on Cavitation in a 2-D Convergent-Divergent Nozzle Flow
,”
ASME
Paper No. FEDSM2014-21902.10.1115/FEDSM2014-21902
19.
Pelz
,
P.
,
Keil
,
T.
, and
Groß
,
T.
,
2017
, “
The Transition From Sheet to Cloud Cavitation
,”
J. Fluid Mech.
,
817
, pp.
439
454
.10.1017/jfm.2017.75
You do not currently have access to this content.