Abstract

The flow past a triangular cylinder is one of the fundamental flows and widely utilized in flame stabilization and heat transfer. In this study, the near wake and vortex characteristics of the flow past an equilateral triangular cylinder are experimentally measured by a high frequency particle image velocimetry (PIV) system at 3 kHz. The triangular cylinder is installed in a wind tunnel with Reynolds numbers ranging from 10,700 to 17,700. The Reynolds-averaged and phase-averaged methods are utilized to analyze the flow field. Based on the flow fields, the length of the vortex formation region is about 1.5 times of the length of the equilateral triangle side. The residence time of a vortex in the vortex formation region is equal to a vortex shedding period. The stream wise velocity of the vortex core center downstream the vortex formation is about 0.8 times of the freestream velocity, which is slightly larger than the value about 0.7 for the flow past a circular cylinder at the same Reynolds number. The maximum tangential velocity at the periphery of the vortex core maybe occurs slightly in advance of the vortex reaching the boundary of the vortex formation region. The normalized lengths of the recirculation zone of the triangular cylinder keep nearly unchanged and are about 1.55 to 1.9 times of those of the circular cylinder at the same Reynolds number. The normalized normal wise instead of stream wise turbulence intensity has stronger effects on the distribution of the normalized turbulent kinetic energy.

References

1.
Das
,
D.
,
Roy
,
M.
, and
Basak
,
T.
,
2017
, “
Studies on Natural Convection Within Enclosures of Various (Non-Square) Shapes—A Review
,”
Int. J. Heat Mass Transfer
,
106
, pp.
356
406
.10.1016/j.ijheatmasstransfer.2016.08.034
2.
Ebrahimi
,
H.
,
2006
, “
Overview of Gas Turbine Augmentor Design, Operation, and Combustion Oscillation
,”
AIAA Paper No. 2006-4916
.
3.
Sidebottom
,
W.
,
Ooi
,
A.
, and
Jones
,
D.
,
2015
, “
A Parametric Study of Turbulent Flow Past a Circular Cylinder Using Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091202
.10.1115/1.4030380
4.
Maryami
,
R.
,
Azarpeyvand
,
M.
,
Dehghan
,
A. A.
, and
Afshari
,
A.
,
2019
, “
An Experimental Investigation of the Surface Pressure Fluctuations for Round Cylinders
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061203
.10.1115/1.4042036
5.
More
,
B. S.
,
Dutta
,
S.
, and
Gandhi
,
B. K.
,
2020
, “
Flow Around Three Side-by-Side Square Cylinders and the Effect of the Cylinder Oscillation
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021303
.10.1115/1.4045206
6.
Fan
,
A.
,
Wan
,
J.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2013
, “
Interactions Between Heat Transfer, Flow Field and Flame Stabilization in a Micro-Combustor With a Bluff Body
,”
Int. J. Heat Mass Transfer
,
66
, pp.
72
79
.10.1016/j.ijheatmasstransfer.2013.07.024
7.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
8.
Lieuwen
,
T.
,
Shanbhogue
,
S. J.
,
Khosla
,
S.
, and
Smith
,
C.
,
2007
, “
Dynamics of Bluff Body Flames Near Blowoff
,”
AIAA Paper No. 2007-169.
9.
Derakhshandeh
,
J. F.
, and
Alam
,
M.
,
2019
, “
A Review of Bluff Body Wakes
,”
Ocean Eng.
,
182
, pp.
475
488
.10.1016/j.oceaneng.2019.04.093
10.
Thompson
,
M. C.
,
Leweke
,
T.
, and
Williamson
,
C. H. K.
,
2001
, “
The Physical Mechanism of Transition in Bluff Body Wakes
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
607
616
.10.1006/jfls.2000.0369
11.
Jackson
,
C. P.
,
1987
, “
A Finite-Element Study of the Onset of Vortex Shedding in Flow Past Variously Shaped Bodies
,”
J. Fluid Mech.
,
182
(
1
), pp.
23
45
.10.1017/S0022112087002234
12.
Zielinska
,
B. J.
, and
Wesfreid
,
J. E.
,
1995
, “
On the Spatial Structure of Global Modes in Wake Flow
,”
Phys. Fluids
,
7
(
6
), pp.
1418
1424
.10.1063/1.868529
13.
Wesfreid
,
J. E.
,
Goujon-Durand
,
S.
, and
Zielinska
,
B. J.
,
1996
, “
Global Mode Behavior of the Streamwise Velocity in Wakes
,”
J. Phys. II
,
6
(
10
), pp.
1343
1357
.10.1051/jp2:1996135
14.
De
,
A. K.
, and
Dalal
,
A.
,
2006
, “
Numerical Simulation of Unconfined Flow Past a Triangular Cylinder
,”
J. Numer. Methods Fluids
,
52
(
7
), pp.
801
821
.10.1002/fld.1210
15.
Dhiman
,
A.
, and
Shyam
,
R.
,
2011
, “
Unsteady Heat Transfer From an Equilateral Triangular Cylinder in the Unconfined Flow Regime
,”
ISRN Mech. Eng.
,
2011
, pp.
1
13
.10.5402/2011/932738
16.
Farhadi
,
M.
,
Sedighi
,
K.
, and
Korayem
,
A. M.
,
2010
, “
Effect of Wall Proximity on Forced Convection in a Plane Channel With a Built-In Triangular Cylinder
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
1010
1018
.10.1016/j.ijthermalsci.2009.12.013
17.
Zeitoun
,
O.
,
Ali
,
M.
, and
Nuhait
,
A.
,
2011
, “
Convective Heat Transfer Around a Triangular Cylinder in an Air Cross Flow
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1685
1697
.10.1016/j.ijthermalsci.2011.04.011
18.
El-Sherbiny
,
S.
,
1983
, “
Flow Separation and Reattachment Over the Sides of a 90° Triangular Prism
,”
J. Wind Eng. Ind. Aerodyn.
,
11
(
1–3
), pp.
393
403
.10.1016/0167-6105(83)90116-2
19.
Buresti
,
G.
,
Lombardi
,
G.
, and
Talamelli
,
A.
,
1998
, “
Low Aspect-Ratio Triangular Prisms in Cross-Flow: Measurements of the Wake Fluctuating Velocity Field
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
, pp.
463
473
.10.1016/S0167-6105(98)00042-7
20.
Camarri
,
S.
,
Salvetti
,
M. V.
, and
Buresti
,
G.
,
2006
, “
Large-Eddy Simulation of the Flow Around a Triangular Prism With Moderate Aspect Ratio
,”
J. Wind Eng. Ind. Aerodyn.
,
94
(
5
), pp.
309
322
.10.1016/j.jweia.2006.01.003
21.
Iungo
,
G. V.
, and
Buresti
,
G.
,
2009
, “
Experimental Investigation on the Aerodynamic Loads and Wake Flow Features of Low Aspect-Ratio Triangular Prisms at Different Wind Directions
,”
J. Fluids Struct.
,
25
(
7
), pp.
1119
1135
.10.1016/j.jfluidstructs.2009.06.004
22.
Agrwal
,
N.
,
Dutta
,
S.
, and
Gandhi
,
B. K.
,
2016
, “
Experimental Investigation of Flow Field Behind Triangular Prisms at Intermediate Reynolds Number With Different Apex Angles
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
97
111
.10.1016/j.expthermflusci.2015.10.032
23.
Chattopadhyay
,
H.
,
2007
, “
Augmentation of Heat Transfer in a Channel Using a Triangular Prism
,”
Int. J. Therm. Sci.
,
46
(
5
), pp.
501
505
.10.1016/j.ijthermalsci.2006.07.003
24.
Kim
,
N.
,
Kim
,
H.
, and
Park
,
H.
,
2015
, “
An Experimental Study on the Effects of Rough Hydrophobic Surfaces on the Flow Around a Circular Cylinder
,”
Phys. Fluids
,
27
(
8
), p.
085113
.10.1063/1.4929545
25.
Zhou
,
B.
,
Wang
,
X.
,
Guo
,
W.
,
Gho
,
W. M.
, and
Tan
,
S. K.
,
2015
, “
Control of Flow Past a Dimpled Circular Cylinder
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
19
26
.10.1016/j.expthermflusci.2015.07.020
26.
Zhou
,
B.
,
Wang
,
X.
,
Guo
,
W.
,
Gho
,
W. M.
, and
Tan
,
S. K.
,
2015
, “
Experimental Study on Flow Past a Circular Cylinder With Rough Surface
,”
Ocean Eng.
,
109
, pp.
7
13
.10.1016/j.oceaneng.2015.08.062
27.
Djeridi
,
H.
,
Braza
,
M.
,
Perrin
,
R.
,
Harran
,
G.
,
Cid
,
E.
, and
Cazin
,
S.
,
2003
, “
Near-Wake Turbulence Properties Around a Circular Cylinder at High Reynolds Number
,”
Flow Turbul. Combust.
,
71
(
1–4
), pp.
19
34
.10.1023/B:APPL.0000014930.49408.53
28.
Braza
,
M.
,
Perrin
,
R.
, and
Hoarau
,
Y.
,
2006
, “
Turbulence Properties in the Cylinder Wake at High Reynolds Numbers
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
757
771
.10.1016/j.jfluidstructs.2006.04.021
29.
Perrin
,
R.
,
Braza
,
M.
,
Cid
,
E.
,
Cazin
,
S.
,
Moradei
,
F.
,
Barthet
,
A.
,
Sevrain
,
A.
, and
Hoarau
,
Y.
,
2006
, “
Near-Wake Turbulence Properties in the High Reynolds Number Incompressible Flow Around a Circular Cylinder Measured by Two- and Three-Component PIV
,”
Flow Turbul. Combust.
,
77
(
1–4
), pp.
185
204
.10.1007/s10494-006-9043-5
30.
Michaelis
,
D.
,
Poelma
,
C.
,
Scarano
,
F.
,
Westerweel
,
J.
, and
Wieneke
,
B.
,
2006
, “
A 3D Time-resolved Cylinder Wake Survey by Tomographic PIV
,”
12th International Symposium on Flow Visualization
, Göttingen, Germany, Sept. 10–14, pp.
1
11
.
31.
Scarano
,
F.
,
Elsinga
,
G. E.
,
Bocci
,
E.
, and
van Oudheusden
,
B. W.
,
2006
, “
Investigation of 3-D Coherent Structures in the Turbulent Cylinder Wake Using Tomo-PIV
,”
13th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon
, Portugal, June 26–29, pp.
1
11
.
32.
Gerrard
,
J. H.
,
1965
, “
A Disturbance-Sensitive Reynolds Number Range of the Flow Past a Circular Cylinder
,”
J. Fluid Mech.
,
22
(
1
), pp.
187
196
.10.1017/S0022112065000666
33.
Gerrard
,
J. H.
,
1966
, “
The Mechanics of the Formation Region of Vortices Behind Bluff Bodies
,”
J. Fluid Mech.
,
25
(
2
), pp.
401
413
.10.1017/S0022112066001721
34.
Green
,
R. B.
, and
Gerrard
,
J. H.
,
1993
, “
Vorticity Measurements in the Near Wake of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
246
, pp.
675
691
.10.1017/S002211209300031X
35.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Tuttle
,
S. G.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2011
, “
Blowoff Mechanism of Two Dimensional Bluff-Body Stabilized Turbulent Premixed Flames in a Prototypical Combustor
,”
Combust. Flame
,
158
(
7
), pp.
1358
1371
.10.1016/j.combustflame.2010.11.012
36.
Eli
,
L.
,
Bradley
,
D.
,
Nick
,
G.
,
Craig
,
D.
, and
Gregory
,
E.
,
2010
, “
A Practical Approach to PIV Uncertainty Analysis
,”
AIAA Paper No. 2010-4355.
37.
Jardin
,
T.
, and
Bury
,
Y.
,
2012
, “
Lagrangian and Spectral Analysis of the Forced Flow Past a Circular Cylinder Using Pulsed Tangential Jets
,”
J. Fluid Mech.
,
696
, pp.
285
300
.10.1017/jfm.2012.35
38.
Sattari
,
P.
,
Rival
,
D. E.
,
Martinuzzi
,
R. J.
, and
Tropea
,
C.
,
2012
, “
Growth and Separation of a Start-Up Vortex From a Two-Dimensional Shear Layer
,”
Phys. Fluids
,
24
(
10
), p.
107102
.10.1063/1.4758793
39.
Shaafi
,
K.
,
Naik
,
S. N.
, and
Vengadesan
,
S.
,
2017
, “
Effect of Rotating Cylinder on the Wake-Wall Interactions
,”
Ocean Eng.
,
139
, pp.
275
286
.10.1016/j.oceaneng.2017.04.044
40.
Wornom
,
S.
,
Ouvrard
,
H.
,
Salvetti
,
M. V.
,
Koobus
,
B.
, and
Dervieux
,
A.
,
2011
, “
Variational Multiscale Large-Eddy Simulations of the Flow Past a Circular Cylinder: Reynolds Number Effects
,”
Comput. Fluids
,
47
(
1
), pp.
44
50
.10.1016/j.compfluid.2011.02.011
41.
Ozgoren
,
M.
,
Pinar
,
E.
,
Sahin
,
B.
, and
Akilli
,
H.
,
2011
, “
Comparison of Flow Structures in the Downstream Region of a Cylinder and Sphere
,”
Int. J. Heat Fluid Flow
,
32
(
6
), pp.
1138
1146
.10.1016/j.ijheatfluidflow.2011.08.003
You do not currently have access to this content.