Abstract

In this paper, a comprehensive study has been performed to address the excitation of a separated boundary layer near the leading edge due to surface roughness. Experiments are performed on a model airfoil with the semicircular leading edge at a Reynolds number (Rec) of 1.6×105, where the freestream turbulence (fst) is 1.2%. The flow features are investigated over the three rough surfaces with the roughness characteristic in the wall unit of 17, 10.5, and 8.4, which are estimated from the velocity profile at a location far downstream of reattachment. The wall roughness results in an early transition and reattachment, leading to a reduction of the laminar shear layer length apart from the bubble length. It is worthwhile to note that although the large-amplitude pretransitional perturbations are apparent from the beginning for the rough surface, the shear layer reflects the amplification of selected frequencies, where the fundamental frequency when normalized is almost the same as that of the smooth wall. The universal intermittency curve can be used to describe the transition of the shear layer, which exhibits some resemblance to the excitation of the boundary layer under fst, signifying the viscous effect.

References

1.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
,
1986
, “
Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,”
J. Fluid Mech.
,
162
(
1
), pp.
69
98
.10.1017/S0022112086001933
2.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
,
1991
, “
Rough-Wall Turbulent Boundary Layers
,”
ASME Appl. Mech. Rev.
,
44
(
1
), pp.
1
25
.10.1115/1.3119492
3.
Krogstad
,
P. A.
,
Antonia
,
R. A.
, and
Browne
,
L. W. B.
,
1992
, “
Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
245
(
1
), pp.
599
617
.10.1017/S0022112092000594
4.
Jimenez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
173
196
.10.1146/annurev.fluid.36.050802.122103
5.
Keirsbulck
,
L.
,
Labraga
,
L.
,
Mazouz
,
A.
, and
Tournier
,
C.
,
2002
, “
Surface Roughness Effects on Turbulent Boundary Layer Structures
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
127
135
.10.1115/1.1445141
6.
Hong
,
J.
,
Katz
,
J.
, and
Schultz
,
M. P.
,
2011
, “
Near-Wall Turbulence Statistics and Flow Structures Over Three-Dimensional Roughness in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
667
, pp.
1
37
.10.1017/S0022112010003988
7.
MacDonald
,
M.
,
Chan
,
L.
,
Chung
,
D.
,
Hutchins
,
N.
, and
Ooi
,
A.
,
2016
, “
Turbulent Flow Over Transitionally Rough Surfaces With Varying Roughness Densities
,”
J. Fluid Mech.
,
804
, pp.
130
161
.10.1017/jfm.2016.459
8.
Jeong
,
H.
,
Lee
,
S. W.
, and
Song
,
S. J.
,
2019
, “
Measurement of Transitional Surface Roughness Effects on Flat-Plate Boundary Layer Transition
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
074501
.10.1115/1.4042258
9.
Boyle
,
R. J.
,
1994
, “
Prediction of Surface Roughness and Incidence Effects on Turbine Performance
,”
ASME J. Turbomach.
,
116
(
4
), pp.
745
751
.10.1115/1.2929468
10.
Yun
,
Y. I.
,
Park
,
I. Y.
, and
Song
,
S. J.
,
2005
, “
Performance Degradation Due to Blade Surface Roughness in a Single-Stage Axial Turbine
,”
ASME J. Turbomach.
,
127
(
1
), pp.
137
143
.10.1115/1.1811097
11.
Hummel
,
F.
,
LöTzerich
,
M.
,
Cardamone
,
P.
, and
Fottner
,
L.
,
2005
, “
Surface Roughness Effects on Turbine Blade Aerodynamics
,”
ASME J. Turbomach.
,
127
(
3
), pp.
453
461
.10.1115/1.1860377
12.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.10.1017/S0022112099006138
13.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of Short Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.10.1017/S0022112099008976
14.
Spalart
,
P. R.
, and
Strelets
,
M. K.
,
2000
, “
Mechanisms of Transition and Heat Transfer in a Separation Bubble
,”
J. Fluid Mech.
,
403
, pp.
329
349
.10.1017/S0022112099007077
15.
Yang
,
Z. Y.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.10.1017/S0022112001004633
16.
Hu
,
H.
, and
Yang
,
Z.
,
2008
, “
An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051101
.10.1115/1.2907416
17.
Yarusevych
,
S.
,
Sullivan
,
P. E.
, and
Kawall
,
J. G.
,
2009
, “
On Vortex Shedding From an Airfoil in Low-Reynolds-Number Flows
,”
J. Fluid Mech.
,
632
, pp.
245
271
.10.1017/S0022112009007058
18.
Hain
,
R.
,
Kahler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.10.1017/S0022112009006661
19.
Dahnert
,
J.
,
Lyko
,
C.
, and
Peitsch
,
D.
,
2013
, “
Transition Mechanisms in Laminar Separated Flow Under Simulated Low Pressure Turbine Aerofoil Conditions
,”
ASME J. Turbomach.
,
135
(
1
), p.
011007
.10.1115/1.4006393
20.
Yarusevych
,
S.
, and
Kotsonis
,
M.
,
2017
, “
Steady and Transient Response of a Laminar Separation Bubble to Controlled Disturbances
,”
J. Fluid Mech.
,
813
, pp.
955
990
.10.1017/jfm.2016.848
21.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.10.1017/S0022112008000864
22.
Marxen
,
O.
,
Lang
,
M.
, and
Rist
,
U.
,
2013
, “
Vortex Formation and Vortex Breakup in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
728
, pp.
58
90
.10.1017/jfm.2013.222
23.
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2011
, “
Interaction of Viscous Instability Modes in Separation-Bubble Transition
,”
Phys. Fluids
,
23
(
12
), p.
124102
.10.1063/1.3666844
24.
Samson
,
A.
, and
Sarkar
,
S.
,
2016
, “
Effects of Free-Stream Turbulence on Transition of a Separated Boundary Layer Over the Leading-Edge of a Constant Thickness Aerofoil
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021202
.10.1115/1.4031249
25.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.10.1115/1.2812949
26.
Anand
,
K.
, and
Sarkar
,
S.
,
2017
, “
Features of Laminar Separated Boundary Layer Near the Leading-Edge of a Model Airfoil for Different Angles of Attack: An Experimental Study
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021201
.10.1115/1.4034606
27.
Hosseinverdi
,
S.
, and
Fasel
,
F. H.
,
2019
, “
Numerical Investigation of Laminar–Turbulent Transition in Laminar Separation Bubbles: The Effect of Free-Stream Turbulence
,”
J. Fluid Mech.
,
858
, pp.
714
759
.10.1017/jfm.2018.809
28.
Sarkar
,
S.
, and
Voke
,
P.
,
2006
, “
Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade Due to Interactions of Passing Wakes and Inflectional Boundary Layer
,”
ASME J. Turbomach.
,
128
(
2
), pp.
221
231
.10.1115/1.2137741
29.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.10.1115/1.2841384
30.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part II: Aerodynamic Losses
,”
ASME J. Turbomach.
,
134
(
4
), p.
041007
.10.1115/1.4003656
31.
Monotomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.10.1115/1.3148475
32.
Sarkar
,
S.
,
Babu
,
H.
, and
Sadique
,
J.
,
2016
, “
Interactions of Separation Bubble With Oncoming Wakes by Large-Eddy Simulation
,”
ASME J. Heat Transfer
,
138
(
2
), p.
021703
.10.1115/1.4031645
33.
Song
,
S.
, and
Eaton
,
J. K.
,
2002
, “
The Effects of Wall Roughness on the Separated Flow Over a Smoothly Contoured Ramp
,”
Exp. Fluids
,
33
(
1
), pp.
38
46
.10.1007/s00348-002-0411-1
34.
Tsikata
,
J. M.
, and
Tachie
,
M. F.
,
2013
, “
Adverse Pressure Gradient Turbulent Flows Over Rough Walls
,”
Int. J. Heat Fluid Flow
,
39
, pp.
127
145
.10.1016/j.ijheatfluidflow.2012.11.001
35.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2007
, “
The Rough-Wall Turbulent Boundary Layer From the Hydraulically Smooth to the Fully Rough Regime
,”
J. Fluid Mech.
,
580
, pp.
381
405
.10.1017/S0022112007005502
36.
Wu
,
W.
, and
Piomelli
,
U.
,
2018
, “
Effects of Surface Roughness on a Separating Turbulent Boundary Layer
,”
J. Fluid Mech.
,
841
, pp.
552
580
.10.1017/jfm.2018.101
37.
Simens
,
M. P.
, and
Gungor
,
A. G.
,
2014
, “
The Effect of Surface Roughness on Laminar Separated Boundary Layers
,”
ASME J. Turbomach.
,
136
(
3
), p.
031014
.10.1115/1.4025200
38.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2006
, “
Effects of Surface-Roughness Geometry on Separation-Bubble Transition
,”
ASME J. Turbomach.
,
128
(
2
), pp.
349
356
.10.1115/1.2101852
39.
Rao
,
V. N.
,
Jefferson-Loveday
,
R.
,
Tucker
,
P. G.
, and
Lardeau
,
S.
,
2014
, “
Large Eddy Simulations in Turbines: Influence of Roughness and Free-Stream Turbulence
,”
Flow Turbul. Combust.
,
92
(
1–2
), pp.
543
561
.10.1007/s10494-013-9465-9
40.
Yavuzkurt
,
S.
,
1984
, “
A Guide to Uncertainty Analysis of Hotwire Data
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
181
186
.10.1115/1.3243096
41.
Bradshaw
,
P.
,
1971
,
An Introduction to Turbulence and Its Measurement
,
Pergamon Press
,
Oxford
.
42.
Taylor
,
R. P.
,
1990
, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
175
180
.10.1115/1.2927630
43.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.10.1115/1.2841411
44.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.10.1115/1.1400115
45.
Tarada
,
F.
, and
Suzuki
,
M.
,
1993
, “
External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness
,”
ASME
Paper No. 93-GT-74. 10.1115/1993-GT-74
46.
Jackson
,
P.
,
1981
, “
On the Displacement Height in the Logarithmic Velocity Profile
,”
J. Fluid Mech.
,
111
(
1
), pp.
15
25
.10.1017/S0022112081002279
47.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
48.
Gaster
,
M.
,
1969
, “
The Structure and Behaviour of Laminar Separation Bubbles
,”
Aeronautical Division N.P.L., Ministry of Technology
,
London
, Reports and Memoranda No. 3595.
49.
Horton
,
H. P.
,
1968
, “
Laminar Separation Bubbles in Two and Three- Dimensional Incompressible Flow
,” Ph.D. thesis,
University of London
,
London
.
50.
Gerakopulous
,
R.
,
Boutilier
,
M. S. H.
, and
Yarusevych
,
S.
,
2010
, “
Aerodynamic Characterisation of a NACA 0018 Airfoil at Low Reynolds Numbers
,”
AIAA
Paper No. 2010-4629. 10.2514/6.2010-4629
51.
Arena
,
A. V.
, and
Mueller
,
T. J.
,
1980
, “
Laminar Separation, Transition, and Turbulent Reattachment Near the Leading Edge of Airfoils
,”
AIAA J.
,
18
(
7
), pp.
747
753
.10.2514/3.50815
52.
Ol
,
M. V.
,
Hanff
,
E.
,
McAuliffe
,
B.
,
Scholz
,
U.
, and
Kaehler
,
C.
,
2005
, “
Comparison of Laminar Separation Bubble Measurements on a Low Reynolds Number Airfoil in Three Facilities
,”
AIAA
Paper No. 2005–5149.
53.
Talan
,
M.
, and
Hourmouziadis
,
J.
,
2002
, “
Characteristic Regimes of Transitional Separation Bubbles in Unsteady Flow
,”
Flow, Turbul. Combust.
,
69
(
3/4
), pp.
207
227
.10.1023/A:1027355105017
54.
Kaun
,
C. L.
, and
Wang
,
T.
,
1990
, “
Investigation of the Intermittent Behavior of Transitional Boundary Layer Using a Conditional Averaging Technique
,”
Exp. Therm. Fluid Sci.
,
3
(
2
), pp.
157
173
.10.1016/0894-1777(90)90084-K
55.
Hedley
,
T. B.
, and
Keffer
,
J. F.
,
1974
, “
Turbulent/Non-Turbulent Decisions in an Intermittent Flow
,”
J. Fluid Mech.
,
64
(
4
), pp.
625
644
.10.1017/S0022112074001832
56.
Dhawan
,
S.
, and
Narasimha
,
R.
,
1958
, “
Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
,
3
(
4
), pp.
418
436
.10.1017/S0022112058000094
57.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
449
457
.10.1115/1.1906266
58.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2001
, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
, pp.
149
168
.10.1017/S0022112000002810
59.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
60.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
506
536
.10.1115/1.2929110
61.
Hatman
,
A.
, and
Wang
,
T.
,
1999
, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
,
121
(
3
), pp.
594
602
.10.1115/1.2841357
You do not currently have access to this content.