Abstract

This research presents a lumped parameter numerical model aimed at designing and optimizing an axial piston pump. For the first time, it has been shown that a lumped parameter model can accurately model axial piston pump dynamics based on a comparison with computational fluid dynamic (CFD) models and experimental results. Since the method is much more efficient than CFD, it can optimize the design. Both steady-state and dynamic behaviors have been analyzed. The model results have been compared with experimental data, showing a good capacity in predicting the pump performance, including pressure ripple. The swashplate dynamics have been investigated experimentally, measuring the dynamic pressure which controls the pump displacement; a comparison with the numerical model results confirmed the high accuracy. An optimization process has been conducted on the valve-plate geometry to control fluid-born noise by flow ripple reduction. The nonlinear programming by quadratic Lagrangian (NLPQL) algorithm is used since it is suitable for this study. The objective function to minimize is the well-known function, the nonuniformity grade (NUG), a parameter directly correlated with flow ripple. A prototype of the best design has been realized and tested, confirming a reduction in the pressure ripple. An endurance test was also conducted. As predicted from the numerical model, a significant reduction of cavitation erosion was observed.

References

1.
Ivantysyn
,
J.
, and
Ivantysynova
,
M.
,
2003
,
Hydrostatic Pumps and Motors: Principles, Design, Performance, Modelling, Analysis, Control and Testing
,
Tech Books International
, India Tech Books International, New Delhi, India.
2.
Xu
,
B.
,
Sun
,
Y. H.
,
Zhang
,
J. H.
,
Sun
,
T.
, and
Mao
,
Z. B.
,
2015
, “
A New Design Method for the Transition Region of the Valve Plate for an Axial Piston Pump
,”
Zhejiang Univ.-Sci. A (Appl. Phys. Eng.)
,
16
(
3
), pp.
229
240
.10.1631/jzus.A1400266
3.
Ye
,
S. G.
,
Zhang
,
J. H.
, and
Xu
,
B.
,
2018
, “
Noise Reduction of an Axial Piston Pump by Valve Plate Optimization
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
57
.10.1186/s10033-018-0258-x
4.
Wang
,
S.
,
2010
, “
The Analysis of Cavitation Problems in the Axial Piston Pump
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
074502
.10.1115/1.4002058
5.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.10.1115/1.4003196
6.
Changbin
,
G.
,
Zongxia
,
J.
, and
Shouzhan
,
H.
,
2014
, “
Theoretical Study of Flow Ripple for an Aviation Axial-Piston Pump With Damping Holes in the Valve Plate
,”
Chin. J. Aeronaut.
,
27
(
1
), pp.
169
181
.10.1016/j.cja.2013.07.044
7.
Berta
,
G. L.
,
Casoli
,
P.
,
Vacca
,
A.
, and
Guidetti
,
M.
,
2002
, “
Simulation Model of Axial Piston Pumps Inclusive of Cavitation
,”
ASME
Paper No. IMECE2002-39329.10.1115/IMECE2002-39329
8.
Casoli
,
P.
,
Pastori
,
M.
,
Scolari
,
F.
, and
Rundo
,
M.
,
2019
, “
Active Pressure Ripple Control in Axial Piston Pumps Through High-Frequency Swash Plate Oscillations—A Theoretical Analysis
,”
Energies
,
12
(
7
), p.
1377
.10.3390/en12071377
9.
Wu
,
X.
,
Chen
,
C.
,
Hong
,
C.
, and
He
,
Y.
,
2017
, “
Flow Ripple Analysis and Structural Parametric Design of a Piston Pump
,”
J. Mech. Sci. Technol.
,
31
(
9
), pp.
4245
4254
.10.1007/s12206-017-0823-8
10.
Manring
,
N. D.
, and
Zhang
,
Y.
,
2001
, “
The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume Design
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
3
), pp.
479
487
.10.1115/1.1389311
11.
Frosina
,
E.
,
Marinaro
,
G.
, and
Senatore
,
A.
,
2019
, “
Experimental and Numerical Analysis of an Axial Piston Pump: A Comparison Between Lumped Parameter and 3D CFD Approaches
,”
ASME
Paper No. AJKFLUIDS2019-5406.10.1115/AJKFLUIDS2019-5406
12.
Frosina
,
E.
,
Marinaro
,
G.
,
Senatore
,
A.
, and
Pavanetto
,
M.
,
2018
, “
Effects of PCFV and Pre-Compression Groove on the Flow Ripple Reduction in Axial Piston Pumps
,” Global Fluid Power Society Ph.D. Symposium (
GFPS
), Samara, Russia, July 18–20, p. 847238. 10.1109/GFPS.2018.8472389
13.
Siemens PLM Software, 2020, “
Simcenter Amesim®, Rev 2020.1,” Plano, TX, Technical Bulletin No. 118.
14.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K.
, and
Lichinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
15.
Canudas-de-Wit
,
C.
,
Tsiotras
,
P.
,
Velenis
,
E.
,
Basset
,
M.
, and
Gissinger
,
G.
,
2003
, “
Dynamic Friction Models for Road/Tire Longitudinal Interaction
,”
Veh. Syst. Dyn.
,
39
(
3
), pp.
189
226
.10.1076/vesd.39.3.189.14152
16.
Claeys, X., Yi, J., Alvarez, L., Horowitz, R., Canudas De Wit, C.
,
2001
, “A Dynamic
Tire/Road Friction Model for 3D Vehicle Control and Simulation
,”
IEEE Conference on Intelligent Transportation Systems
, Oakland, CA, Aug. 25–29, pp.
483
488
.10.1109/ITSC.2001.948705
17.
Olsson
,
H.
,
1996
, “
Control Systems With Friction
,” Ph.D. thesis, Lund Institute of Technology,
University of Lund
, Department of Automatic Control Lund Institute of Technology, Lund, Sweden.
18.
Olsson
,
H.
,
Astrom
,
K.
,
Canudas de Wit
,
C.
,
Gafvert
,
M.
, and
Lichinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
European J. Control
, 4(3), pp. 176–195.10.1016/S0947-3580(98)70113-X
19.
Armstrong-Helouvry
,
B.
,
1991
,
Control of Machines With Friction
,
Kluwer Academic Publishers
, Springer, New York.
20.
Haessig
,
D. A.
, and
Friedland
,
B.
,
1991
, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Syst., Meas., Control
,
113
(
3
), pp.
354
362
.10.1115/1.2896418
21.
Dahl
,
P.
,
1968
, “
A Solid Friction Model
,”
The Aerospace Corporation
,
El Segundo, CA
, Technical Report No. TOR-0158(3107-18)-1.
22.
Dahl
,
P.
,
1976
, “
Solid Friction Damping of Mechanical Vibrations
,”
AIAA J.
,
14
(
12
), pp.
1675
1682
.10.2514/3.61511
23.
Dahl
,
P.
,
1975
, “
Solid Friction Damping of Spacecraft Oscillations
,”
AIAA Paper No. 75-1104.
24.
Stribeck
,
R.
,
1901
, “Kugellager für beliebige Belastungen (Ball Bearings for any Stress),”
Z. Ver. Deutscher Ing.
,
45
, pp.
73
125
.
You do not currently have access to this content.