Abstract

The objective of this paper is to observe and investigate the early evolution of the shock wave, induced by a nanosecond pulsed laser in still water. A numerical method is performed to calculate the propagation of the shock wave within 1 μs, after optical breakdown, based on the Gilmore model and the Kirkwood–Bethe hypothesis. The input parameters of the numerical method include the laser pulse duration, the size of the plasma, and the maximally extended cavitation bubble, which are measured utilizing a high time-resolved shadowgraph system. The calculation results are verified by shock wave observation experiments at the cavitation bubble expansion stage. The relative errors of the radiuses and the velocity of the shock wave front reach the maximum value of 45% at 5 ns after breakdown and decrease to less than 20% within 20 ns. The high attenuation characteristics of the shock wave after the optical breakdown are predicted by the numerical method. The quick time and space evolution of the shock wave are carefully analyzed. The normalized shock wave width is found to be independent of the laser energy and duration, and the energy partition ratio is around 2.0 using the nanosecond pulsed laser.

References

1.
Luo
,
X. W.
,
Ji
,
B.
, and
Tsujimoto
,
Y.
,
2016
, “
A Review of Cavitation in Hydraulic Machinery
,”
J. Hydrodyn.
,
28
(
3
), pp.
335
358
.10.1016/S1001-6058(16)60638-8
2.
Avellan
,
F.
,
2004
, “
Introduction to Cavitation in Hydraulic Machinery
,”
The 6th International Conference on Hdraulic Machiner and Hdrodnamics
, Timisoara, Romania, Oct. 21–22, pp.
11
22
.https://www.researchgate.net/publication/313526026_Introduction_to_cavitation_in_hydraulic_machinery
3.
Katz
,
J.
,
1997
, “
Cavitation Phenomena and Their Impact on the Flow, Noise, and Performance of Hydraulic Machines
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
741
741
.10.1115/1.2819490
4.
Brennen
,
C. E.
,
2013
, Cavitation Bubble Dynamics, Cambridge University Press, Cambridge, UK.
5.
Brennen
,
C. E.
,
2011
, Hydrodynamics of Pumps, Cambridge University Press, Cambridge, UK.
6.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process
,
20
(
4
), pp.
983
1007
.10.1016/j.ymssp.2004.08.006
7.
Philipp
,
A.
, and
Lauterborn
,
W.
,
1998
, “
Cavitation Erosion by Single Laser-Produced Bubbles
,”
J. Fluid Mech.
,
361
, pp.
75
116
.10.1017/S0022112098008738
8.
Ma
,
X.
,
Huang
,
B.
,
Zhao
,
X.
,
Wang
,
Y.
,
Chang
,
Q.
,
Qiu
,
S.
,
Fu
,
X.
, and
Wang
,
G.
,
2018
, “
Comparisons of Spark-Charge Bubble Dynamics Near the Elastic and Rigid Boundaries
,”
Ultrason. Sonochem.
,
43
, pp.
80
90
.10.1016/j.ultsonch.2018.01.005
9.
Brennen
,
C. E.
,
2013
, Fundamentals of Multiphase Flow, Cambridge University Press, Cambridge, UK.
10.
Ohl
,
C. D.
,
Philipp
,
A.
, and
Lauterborn
,
W.
,
1995
, “
Cavitation Bubble Collapse Studied at 20 Million Frames per Second
,”
Ann. Phys. Leipzig
,
507
(
1
), pp.
26
34
.10.1002/andp.19955070104
11.
Lauterborn
,
W.
, and
Ohl
,
C. D.
,
1997
, “
Cavitation Bubble Dynamics
,”
Ultrason. Sonochem.
,
4
(
2
), pp.
65
75
.10.1016/S1350-4177(97)00009-6
12.
Ma
,
X. J.
,
Zhao
,
X.
,
Huang
,
B.
,
Fu
,
X. Y.
, and
Wang
,
G. Y.
,
2020
, “
On Study of Non-Spherical Bubble Collapse Near a rigid Boundary
,”
J. Hydrodyn.
,
32
(
3
), pp.
523
535
.10.1007/s42241-019-0056-7
13.
Bao
,
H.
,
Zhang
,
H.
,
Gao
,
L.
,
Tang
,
M.
,
Zhang
,
C.
, and
Lu
,
J.
,
2021
, “
Experimental Investigations of Three Laser-Induced Synchronized Bubbles
,”
Ultrason. Sonochem.
,
71
, p.
105375
.10.1016/j.ultsonch.2020.105375
14.
Zhang
,
Y.
,
Qiu
,
X.
,
Zhang
,
X.
,
Tang
,
N.
, and
Zhang
,
Y.
,
2020
, “
Collapsing Dynamics of a Laser-Induced Cavitation Bubble Near the Edge of a Rigid Wall
,”
Ultrason. Sonochem.
,
67
, p.
105157
.10.1016/j.ultsonch.2020.105157
15.
Lauterborn
,
W.
, and
Vogel
,
A.
,
2013
, “
Shock Wave Emission by Laser Generated Bubbles
,”
Bubble Dynamics and Shock Waves
, Springer, Berlin, pp. 67–103.https://link.springer.com/chapter/10.1007/978-3-642-34297-4_3
16.
Ohl
,
C. D.
,
Kurz
,
T.
,
Geisler
,
R.
,
Lindau
,
O.
, and
Lauterborn
,
W.
,
1999
, “
Bubble Dynamics, Shock Waves and Sonoluminescence
,”
Philos. Trans. R. Soc., A
,
357
(
1751
), pp.
269
294
.10.1098/rsta.1999.0327
17.
Vogel
,
A.
,
Busch
,
S.
, and
Parlitz
,
U.
,
1996
, “
Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
148
165
.10.1121/1.415878
18.
Petkovšek
,
R.
,
Možina
,
J.
, and
Močnik
,
G.
,
2005
, “
Optodynamic Characterization of the Shock Waves After Laser-Induced Breakdown in Water
,”
Opt. Exp.
,
13
(
11
), pp.
4107
4112
.10.1364/OPEX.13.004107
19.
Magaletti
,
F.
,
Marino
,
L.
, and
Casciola
,
C. M.
,
2015
, “
Shock Wave Formation in the Collapse of a Vapor Nanobubble
,”
Phys. Rev. Lett.
,
114
(
6
), p.
064501
.10.1103/PhysRevLett.114.064501
20.
Bell
,
C. E.
, and
Landt
,
J. A.
,
1967
, “
Laser Induced High Pressure Shock Waves in Water
,”
Appl. Phys. Lett.
,
10
(
2
), pp.
46
48
.10.1063/1.1754840
21.
Fujimoto
,
J. G.
,
Lin
,
W. Z.
,
Ippen
,
E. P.
,
Puliafito
,
C. A.
, and
Steinert
,
R. F.
,
1985
, “
Time-Resolved Studies of Nd:YAG Laser-Induced Breakdown. Plasma Formation, Acoustic Wave Generation, and Cavitation
,”
Invest. Ophthalmol. Visual Sci.
,
26
(
12
), pp.
1771
1777
.10.1097/00004397-198502520-00019
22.
Doukas
,
A. G.
,
Zweig
,
A. D.
,
Frisoli
,
J. K.
,
Birngruber
,
R.
, and
Deutsch
,
T. F.
,
1991
, “
Non-Invasive Determination of Shock Wave Pressure Generated by Optical Breakdown
,”
Appl. Phys. B
,
53
(
4
), pp.
237
245
.10.1007/BF00357143
23.
Juhasz
,
T.
,
Hu
,
X. H.
,
Turi
,
L.
, and
Bor
,
Z.
,
1994
, “
Dynamics of Shock Waves and Cavitation Bubbles Generated by Picosecond Laser Pulses in Corneal Tissue and Water
,”
Lasers Surg. Med.
,
15
(
1
), pp.
91
98
.10.1002/lsm.1900150112
24.
Juhasz
,
T.
,
Kastis
,
G. A.
,
Suárez
,
C.
,
Bor
,
Z.
, and
Bron
,
W. E.
,
1996
, “
Time-Resolved Observations of Shock Waves and Cavitation Bubbles Generated by Femtosecond Laser Pulses in Corneal Tissue and Water
,”
Lasers Surg. Med.
,
19
(
1
), pp.
23
31
.10.1002/(SICI)1096-9101(1996)19:1<23::AID-LSM4>3.0.CO;2-S
25.
Holzfuss
,
J.
,
Rüggeberg
,
M.
, and
Billo
,
A.
,
1998
, “
Shock Wave Emissions of a Sonoluminescing Bubble
,”
Phys. Rev. Lett.
,
81
(
24
), pp.
5434
5437
.10.1103/PhysRevLett.81.5434
26.
Pecha
,
R.
, and
Gompf
,
B.
,
2000
, “
Microimplosions: Cavitation Collapse and Shock Wave Emission on a Nanosecond Time Scale
,”
Phys. Rev. Lett.
,
84
(
6
), pp.
1328
1330
.10.1103/PhysRevLett.84.1328
27.
Noack
,
J.
, and
Vogel
,
A.
,
1998
, “
Single-Shot Spatially Resolved Characterization of Laser-Induced Shock Waves in Water
,”
Appl. Opt.
,
37
(
19
), pp.
4092
4099
.10.1364/AO.37.004092
28.
Geng
,
S. Y.
,
Yao
,
Z. F.
,
Zhong
,
Q.
,
Du
,
Y. X.
,
Xiao
,
R. F.
, and
Wang
,
F. J.
,
2021
, “
Propagation of Shock Wave at the Cavitation Bubble Expansion Stage Induced by a Nanosecond Laser Pulse
,”
ASME J. Fluids Eng.
,
143
(
5
), p. 051209.10.1115/1.4049933
29.
Ishii
,
K.
, and
Watanabe
,
N.
,
2019
, “
Shock Wave Generation by Collapse of an Explosive Bubble in Water
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3653
3660
.10.1016/j.proci.2018.07.099
30.
Taylor
,
G. I.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion I
,”
Theor. Discuss.
,
201
(
1065
), pp.
159
174
.10.1098/rspa.1950.0049
31.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Princeton University Press
,
Princeton, NJ
.
32.
Ming
,
F. R.
,
Zhang
,
A. M.
,
Xue
,
Y. Z.
, and
Wang
,
S. P.
,
2016
, “
Damage Characteristics of Ship Structures Subjected to Shockwaves of Underwater Contact Explosions
,”
Ocean Eng.
,
117
, pp.
359
382
.10.1016/j.oceaneng.2016.03.040
33.
Jin
,
Z.
,
Yin
,
C.
,
Chen
,
Y.
, and
Hua
,
H.
,
2017
, “
Coupling Runge-Kutta Discontinuous Galerkin Method to Finite Element Method for Compressible Multi-Phase Flow Interacting With a Deformable Sandwich Structure
,”
Ocean Eng.
,
130
, pp.
597
610
.10.1016/j.oceaneng.2016.12.013
34.
Han
,
B.
,
Köhler
,
K.
,
Jungnickel
,
K.
,
Mettin
,
R.
,
Lauterborn
,
W.
, and
Vogel
,
A.
,
2015
, “
Dynamics of Laser-Induced Bubble Pairs
,”
J. Fluid Mech.
,
771
, pp.
706
742
.10.1017/jfm.2015.183
35.
Johnsen
,
E.
, and
Colonius
,
T.
,
2009
, “
Numerical Simulations of Non-Spherical Bubble Collapse
,”
J. Fluid Mech.
,
629
, pp.
231
262
.10.1017/S0022112009006351
36.
Miller
,
S. T.
,
Jasak
,
H.
,
Boger
,
D. A.
,
Paterson
,
E. G.
, and
Nedungadi
,
A.
,
2013
, “
A Pressure-Based, Compressible, Two-Phase Flow Finite Volume Method for Underwater Explosions
,”
Comput. Fluids
,
87
, pp.
132
143
.10.1016/j.compfluid.2013.04.002
37.
Müller
,
S.
,
Bachmann
,
M.
,
Kröninger
,
D.
,
Kurz
,
T.
, and
Helluy
,
P.
,
2009
, “
Comparison and Validation of Compressible Flow Simulations of Laser-Induced Cavitation Bubbles
,”
Comput. Fluids
,
38
(
9
), pp.
1850
1862
.10.1016/j.compfluid.2009.04.004
38.
Christian
,
C. M.
,
Paterson
,
E. G.
, and
Fontaine
,
A. A.
, “
Modeling Laser-Generated Cavitation Bubbles
,”
Proc. 18th Australasian Fluid Mechanics Conference, AFMC 2012, Australasian Fluid Mechanics Society
, Launceston, Australia, Dec. 3–7.https://people.eng.unimelb.edu.au/imarusic/proceedings/18/FrontMatter.pdf
39.
Koch
,
M.
,
Lechner
,
C.
,
Reuter
,
F.
,
Köhler
,
K.
,
Mettin
,
R.
, and
Lauterborn
,
W.
,
2016
, “
Numerical Modeling of Laser Generated Cavitation Bubbles With the Finite Volume and Volume of Fluid Method, Using OpenFOAM
,”
Comput. Fluids
,
126
, pp.
71
90
.10.1016/j.compfluid.2015.11.008
40.
Huang
,
G.
,
Zhang
,
M.
,
Han
,
L.
,
Ma
,
X.
, and
Huang
,
B.
,
2020
, “
Physical Investigation of Acoustic Waves Induced by the Oscillation and Collapse of the Single Bubble
,”
Ultrason. Sonochem.
,
72
, p. 105440.10.1016/j.ultsonch.2020.105440
41.
Kwak
,
H. Y.
,
Kang
,
K. M.
, and
Ko
,
I.
, “
Expanding of Fire-Ball and Subsequent Shock Wave Propagation by Explosives Detonation in Underwater
,”
Proc. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
, Japan, July 24–29, pp. 2833–2840.10.1115/AJK2011-16001
42.
Yin
,
J.
,
Zhang
,
Y.
,
Zhu
,
J.
,
Zhang
,
Y.
, and
Li
,
S.
,
2021
, “
On the Thermodynamic Behaviors and Interactions Between Bubble Pairs: A Numerical Approach
,”
Ultrason. Sonochem.
,
70
, p.
105297
.10.1016/j.ultsonch.2020.105297
43.
Zhang
,
J.
,
Zhang
,
L.
, and
Deng
,
J.
,
2019
, “
Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion During Bubble Collapse
,”
Water
,
11
(
2
), p.
247
.10.3390/w11020247
44.
Oh
,
J.
,
Yoo
,
Y.
,
Seung
,
S.
, and
Kwak
,
H.-Y.
,
2018
, “
Laser-Induced Bubble Formation on a Micro Gold Particle Levitated in Water Under Ultrasonic Field
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
285
291
.10.1016/j.expthermflusci.2018.01.002
45.
Bardy
,
S.
,
Aubert
,
B.
,
Bergara
,
T.
,
Berthe
,
L.
,
Combis
,
P.
,
Hébert
,
D.
,
Lescoute
,
E.
,
Rouchausse
,
Y.
, and
Videau
,
L.
,
2020
, “
Development of a Numerical Code for Laser-Induced Shock Waves Applications
,”
Opt. Laser Technol.
,
124
, p.
105983
.10.1016/j.optlastec.2019.105983
46.
Cogné
,
C.
,
Labouret
,
S.
,
Peczalski
,
R.
,
Louisnard
,
O.
,
Baillon
,
F.
, and
Espitalier
,
F.
,
2016
, “
Theoretical Model of Ice Nucleation Induced by Acoustic Cavitation—Part 1: Pressure and Temperature Profiles Around a Single Bubble
,”
Ultrason. Sonochem.
,
29
, pp.
447
454
.10.1016/j.ultsonch.2015.05.038
47.
Rice
,
M. H.
, and
Walsh
,
J. M.
,
1957
, “
Equation of State of Water to 250 Kilobars
,”
J. Chem. Phys.
,
26
(
4
), pp.
824
830
.10.1063/1.1743415
48.
Gilmore
,
F. R.
,
1952
, “
The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid
,”
Hydrodynamics Laboratory, California Institute of Technology
, Pasadena, CA, Report No. 26–4.https://repository.tudelft.nl/islandora/object/uuid%3A7c729dfb-c84a-4252-81f5-34ab0918cd3c
49.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
, Oxford University Press, New York.
50.
Ridah
,
S.
,
1988
, “
Shock Waves in Water
,”
J. Appl. Phys.
,
64
(
1
), pp.
152
158
.10.1063/1.341448
51.
Gurbatov
,
S.
,
Rudenko
,
O.
, and
Saichev
,
A.
,
2011
,
Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics
, Higher Education Press, Beijing, China.
52.
Vogel
,
A.
,
Noack
,
J.
,
Nahen
,
K.
,
Theisen
,
D.
,
Busch
,
S.
,
Parlitz
,
U.
,
Hammer
,
D. X.
,
Noojin
,
G. D.
,
Rockwell
,
B. A.
, and
Birngruber
,
R.
,
1999
, “
Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales
,”
Appl. Phys. B
,
68
(
2
), pp.
271
280
.10.1007/s003400050617
You do not currently have access to this content.