Abstract

Tomographic particle image velocimetry (Tomo-PIV) has become a standard tool for capturing a three-dimensional (3D) velocity fields in nonreacting flows. However, the diagnostic approach can become costly and challenging to implement when extended to applications which require high-speed cameras. This limitation has led to the use of fiber wound bundles to allow for multiple views to be captured on a single camera sensor. Additionally, employing this diagnostic approach on reacting flow-fields becomes more complex as the introduction of the flame causes additional luminosity and optical distortion which impacts the particle field reconstruction. This work seeks to validate and determine the limitations when utilizing a single sensor fiber-coupled approach for capturing Tomo-PIV data on a reacting flow-field. A premixed propane (C3H8) and air Bunsen burner flame is utilized to examine if the single sensor approach can meet the parameters for acceptable reconstruction based on previous research. The resulting velocity fields are then compared to a traditional PIV measurement to assess the deviation of the single sensor approach from a standard velocimetry measurement approach. It is demonstrated that there is strong agreement between the velocity and vorticity for the average flow-fields; however, when comparing the Reynolds shear stresses, a significant deviation is revealed. The deviation is attributed to strong velocity fluctuations occurring within the instantaneous Tomo-PIV data, which creates a significant divergence between the measurement techniques on an instantaneous basis. This demonstrates that while the approach can obtain reliable velocity and vorticity statistics, there are significant limitations in calculating second-order turbulence statistics. Thus, revealing that there is a tradeoff between the ability to extract the full velocity gradient tensor and the extent of the turbulence-related analysis which can be reliably performed.

References

1.
Bradley
,
D.
,
2016
, “
2—Fundamentals of Lean Combustion
,”
Lean Combustion
, 2nd ed.,
D.
Dunn-Rankin
, and
P.
Therkelsen
, eds.,
Academic Press
,
Boston
, MA, pp.
21
61
.
2.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
2018
,
A First Course in Turbulence
,
MIT Press
, Cambridge, MA.
3.
Herman
,
G. T.
,
2009
,
Fundamentals of Computerized Tomography: Image Reconstruction From Projections
,
Springer Science & Business Media
, Berlin.
4.
Worth
,
N. A.
,
Nickels
,
T. B.
, and
Swaminathan
,
N.
,
2010
, “
A Tomographic PIV Resolution Study Based on Homogeneous Isotropic Turbulence DNS Data
,”
Exp. Fluids
,
49
(
3
), pp.
637
656
.10.1007/s00348-010-0840-1
5.
de Silva
,
C. M.
,
Baidya
,
R.
,
Khashehchi
,
M.
, and
Marusic
,
I.
,
2012
, “
Assessment of Tomographic PIV in Wall-Bounded Turbulence Using Direct Numerical Simulation Data
,”
Exp. Fluids
,
52
(
2
), pp.
425
440
.10.1007/s00348-011-1227-7
6.
Elsinga
,
G. E.
,
Scarano
,
F.
,
Wieneke
,
B.
, and
van Oudheusden
,
B. W.
,
2006
, “
Tomographic Particle Image Velocimetry
,”
Exp. Fluids
,
41
(
6
), pp.
933
947
.10.1007/s00348-006-0212-z
7.
Violato
,
D.
,
Moore
,
P.
, and
Scarano
,
F.
,
2011
, “
Lagrangian and Eulerian Pressure Field Evaluation of Rod-Airfoil Flow From Time-Resolved Tomographic PIV
,”
Exp. Fluids
,
50
(
4
), pp.
1057
1070
.10.1007/s00348-010-1011-0
8.
Violato
,
D.
, and
Scarano
,
F.
,
2011
, “
Three-Dimensional Evolution of Flow Structures in Transitional Circular and Chevron Jets
,”
Phys. Fluids
,
23
(
12
), p.
124104
.10.1063/1.3665141
9.
Nair
,
V.
,
Sirignano
,
M.
,
Emerson
,
B.
,
Halls
,
B.
,
Jiang
,
N.
,
Felver
,
J.
,
Roy
,
S.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2019
, “
Counter Rotating Vortex Pair Structure in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1489
1496
.10.1016/j.proci.2018.06.059
10.
Zhou
,
B.
, and
Frank
,
J. H.
,
2021
, “
Experimental Study of Vorticity-Strain Interactions in Turbulent Premixed Counterflow Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2909
2916
.10.1016/j.proci.2020.06.182
11.
Alekseenko
,
S. V.
,
Abdurakipov
,
S. S.
,
Hrebtov
,
M. Y.
,
Tokarev
,
M. P.
,
Dulin
,
V. M.
, and
Markovich
,
D. M.
,
2018
, “
Coherent Structures in the Near-Field of Swirling Turbulent Jets: A Tomographic PIV Study
,”
Int. J. Heat Fluid Flow
,
70
, pp.
363
379
.10.1016/j.ijheatfluidflow.2017.12.009
12.
Zhu
,
H.-Y.
,
Wang
,
C.-Y.
,
Wang
,
H.-P.
, and
Wang
,
J.-J.
,
2017
, “
Tomographic PIV Investigation on 3D Wake Structures for Flow Over a Wall-Mounted Short Cylinder
,”
J. Fluid Mech.
,
831
, pp.
743
778
.10.1017/jfm.2017.647
13.
Scarano
,
F.
,
2013
, “
Tomographic PIV: Principles and Practice
,”
Meas. Sci. Technol.
,
24
(
1
), p.
012001
.10.1088/0957-0233/24/1/012001
14.
Wieneke
,
B.
,
2008
, “
Volume Self-Calibration for 3D Particle Image Velocimetry
,”
Exp. Fluids
,
45
(
4
), pp.
549
556
.10.1007/s00348-008-0521-5
15.
Udovich
,
J. A.
,
Kirkpatrick
,
N. D.
,
Kano
,
A.
,
Tanbakuchi
,
A.
,
Utzinger
,
U.
, and
Gmitro
,
A. F.
,
2008
, “
Spectral Background and Transmission Characteristics of Fiber Optic Imaging Bundles
,”
Appl. Opt.
,
47
(
25
), pp.
4560
4568
.10.1364/AO.47.004560
16.
Rouse
,
A. R.
,
Kano
,
A.
,
Udovich
,
J. A.
,
Kroto
,
S. M.
, and
Gmitro
,
A. F.
,
2004
, “
Design and Demonstration of a Miniature Catheter for a Confocal Microendoscope
,”
Appl. Opt.
,
43
(
31
), p.
5763
.10.1364/AO.43.005763
17.
Sun
,
R.-D.
,
Nakajima
,
A.
,
Watanabe
,
I.
,
Watanabe
,
T.
, and
Hashimoto
,
K.
,
2000
, “
TiO2-Coated Optical Fiber Bundles Used as a Photocatalytic Filter for Decomposition of Gaseous Organic Compounds
,”
J. Photochem. Photobiol. A: Chem.
,
136
(
1–2
), pp.
111
116
.10.1016/S1010-6030(00)00330-0
18.
Yang
,
L.
,
Mac Raighne
,
A.
,
McCabe
,
E. M.
,
Dunbar
,
L. A.
, and
Scharf
,
T.
,
2005
, “
Confocal Microscopy Using Variable-Focal-Length Microlenses and an Optical Fiber Bundle
,”
Appl. Opt.
,
44
(
28
), p.
5928
.10.1364/AO.44.005928
19.
Carlson
,
K.
,
Chidley
,
M.
,
Sung
,
K.-B.
,
Descour
,
M.
,
Gillenwater
,
A.
,
Follen
,
M.
, and
Richards-Kortum
,
R.
,
2005
, “
In Vivo Fiber-Optic Confocal Reflectance Microscope With an Injection-Molded Plastic Miniature Objective Lens
,”
Appl. Opt.
,
44
(
10
), p.
1792
.10.1364/AO.44.001792
20.
Ma
,
L.
,
Lei
,
Q.
,
Wu
,
Y.
,
Xu
,
W.
,
Ombrello
,
T. M.
, and
Carter
,
C. D.
,
2016
, “
From Ignition to Stable Combustion in a Cavity Flameholder Studied Via 3D Tomographic Chemiluminescence at 20 kHz
,”
Combust. Flame
,
165
, pp.
1
10
.10.1016/j.combustflame.2015.08.026
21.
Ma
,
L.
,
Wu
,
Y.
,
Lei
,
Q.
,
Xu
,
W.
, and
Carter
,
C. D.
,
2016
, “
3D Flame Topography and Curvature Measurements at 5 kHz on a Premixed Turbulent Bunsen Flame
,”
Combust. Flame
,
166
, pp.
66
75
.10.1016/j.combustflame.2015.12.031
22.
Cai
,
W.
,
Li
,
X.
,
Li
,
F.
, and
Ma
,
L.
,
2013
, “
Numerical and Experimental Validation of a Three-Dimensional Combustion Diagnostic Based on Tomographic Chemiluminescence
,”
Opt. Express
,
21
(
6
), pp.
7050
7064
.10.1364/OE.21.007050
23.
Liu
,
H.
,
Sun
,
B.
, and
Cai
,
W.
,
2019
, “
kHz-Rate Volumetric Flame Imaging Using a Single Camera
,”
Opt. Commun.
,
437
, pp.
33
43
.10.1016/j.optcom.2018.12.036
24.
Liu
,
H.
,
Wang
,
Q.
, and
Cai
,
W.
,
2020
, “
Parametric Study on Single-Camera Endoscopic Tomography
,”
J. Opt. Soc. Am. B
,
37
(
2
), pp.
271
278
.10.1364/JOSAB.379793
25.
Reyes
,
J.
,
Knaus
,
D.
,
Micka
,
D.
,
Davis
,
B.
,
Belovich
,
V.
, and
Ahmed
,
K.
,
2019
, “
Single Sensor Fiber-Based High-Speed Tomographic Particle Image Velocimetry
,”
Opt. Lett.
,
44
(
11
), pp.
2748
2751
.10.1364/OL.44.002748
26.
Tokarev
,
M. P.
,
Sharaborin
,
D. K.
,
Lobasov
,
A. S.
,
Chikishev
,
L. M.
,
Dulin
,
V. M.
, and
Markovich
,
D. M.
,
2015
, “
3D Velocity Measurements in a Premixed Flame by Tomographic PIV
,”
Meas. Sci. Technol.
,
26
(
6
), p.
064001
.10.1088/0957-0233/26/6/064001
27.
Kang
,
M.
,
Li
,
X.
, and
Ma
,
L.
,
2015
, “
Three-Dimensional Flame Measurements Using Fiber-Based Endoscopes
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3821
3828
.10.1016/j.proci.2014.07.064
28.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.10.1007/s00348-005-0016-6
29.
Zhang
,
R.
,
Boxx
,
I.
,
Meier
,
W.
, and
Slabaugh
,
C. D.
,
2019
, “
Coupled Interactions of a Helical Precessing Vortex Core and the Central Recirculation Bubble in a Swirl Flame at Elevated Power Density
,”
Combust. Flame
,
202
, pp.
119
131
.10.1016/j.combustflame.2018.12.035
30.
Tyagi
,
A.
,
Boxx
,
I.
,
Peluso
,
S.
, and
O'Connor
,
J.
,
2020
, “
Pocket Formation and Behavior in Turbulent Premixed Flames
,”
Combust. Flame
,
211
, pp.
312
324
.10.1016/j.combustflame.2019.09.033
31.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
32.
Wilson
,
B. M.
, and
Smith
,
B. L.
,
2013
, “
Uncertainty on PIV Mean and Fluctuating Velocity Due to Bias and Random Errors
,”
Meas. Sci. Technol.
,
24
(
3
), p.
035302
.10.1088/0957-0233/24/3/035302
33.
Steinberg
,
A. M.
,
Driscoll
,
J. F.
, and
Ceccio
,
S. L.
,
2008
, “
Measurements of Turbulent Premixed Flame Dynamics Using Cinema Stereoscopic PIV
,”
Exp. Fluids
,
44
(
6
), pp.
985
999
.10.1007/s00348-007-0458-0
34.
Wabel
,
T. M.
,
Skiba
,
A. W.
, and
Driscoll
,
J. F.
,
2018
, “
Evolution of Turbulence Through a Broadened Preheat Zone in a Premixed Piloted Bunsen Flame From Conditionally-Averaged Velocity Measurements
,”
Combust. Flame
,
188
, pp.
13
27
.10.1016/j.combustflame.2017.09.013
35.
Morales
,
A. J.
,
Reyes
,
J.
,
Boxx
,
I.
, and
Ahmed
,
K. A.
,
2020
, “
The Effects of Turbulence on the Lean BlowoutMechanisms of Bluff-Body Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6317
6325
.10.1016/j.proci.2020.06.138
36.
Roy Chowdhury
,
B.
, and
Cetegen
,
B. M.
,
2018
, “
Effects of Free Stream Flow Turbulence on Blowoff Characteristics of Bluff-Body Stabilized Premixed Flames
,”
Combust. Flame
,
190
, pp.
302
316
.10.1016/j.combustflame.2017.12.002
37.
Emerson
,
B.
,
O'Connor
,
J.
,
Juniper
,
M.
, and
Lieuwen
,
T.
,
2012
, “
Density Ratio Effects on Reacting Bluff-Body Flow Field Characteristics
,”
J. Fluid Mech.
,
706
, pp.
219
250
.10.1017/jfm.2012.248
38.
Shanbhogue
,
S.
,
Shin
,
D.-H.
,
Hemchandra
,
S.
,
Plaks
,
D.
, and
Lieuwen
,
T.
,
2009
, “
Flame Sheet Dynamics of Bluff-Body Stabilized Flames During Longitudinal Acoustic Forcing
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1787
1794
.10.1016/j.proci.2008.06.034
You do not currently have access to this content.