Abstract

Transition modeling in complex flow situations including adverse pressure gradient, streamline curvature, and massive flow separation represents one of the key challenges in computational fluid dynamics that greatly affects the flow characteristics in many thermal and fluid sciences applications. Here, we report a comparative study that helps investigate the capability of the curvature-sensitive kTkLωv2 transition model against the original kTkLω algorithm in predicting the flow behavior surrounding a smooth circular cylinder subjected to Reynolds numbers in the range from 3.9×103 to 3.6×106. A C-program that fully accounts for the model's four transport equations is particularly developed and coupled with the transient solver of ansysfluent. The present simulation enables accurate prediction of the distributions of skin-friction and pressure coefficients along with careful specification of the corresponding drag coefficients and angles of separation and transition. The simulation reveals insignificant variations in the bulk flow behaviors using either model in both sub- and critical flow regimes while a remarkable improvement in the supercritical drag result is achieved using the curvature-sensitive model.

References

1.
Achenbach
,
E.
,
1968
, “Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow Up to Re=5×106,”
J. Fluid Mech.
,
34
(
4
), pp.
625
639
.10.1017/S0022112068002120
2.
Zdravkovich
,
M.
,
1990
, “Conceptual Overview of Laminar and Turbulent Flows Past Smooth and Rough Circular Cylinders,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
53
62
.10.1016/0167-6105(90)90020-D
3.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary Layer Theory
, 9th ed.,
Springer
, Berlin, Heidelberg.
4.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
,
2000
, “Detached-Eddy Simulations Past a Circular Cylinder,”
Flow, Turbul. Combust.
,
63
(
1/4
), pp.
293
313
.10.1023/A:1009901401183
5.
Cheng
,
W.
,
Pullin
,
D.
,
Samtaney
,
R.
,
Zhang
,
W.
, and
Gao
,
W.
,
2017
, “Large-Eddy Simulation of Flow Over a Cylinder With ReD From 3.9×103 to 8.5×105: a Skin-Friction Perspective,”
J. Fluid Mech.
,
820
, pp.
121
158
.10.1017/jfm.2017.172
6.
Celik
,
I.
, and
Shaffer
,
F. D.
,
1995
, “Long Time-Averaged Solutions of Turbulent Flow Past a Circular Cylinder,”
J. Wind Eng. Ind. Aerodyn.
,
56
(
2–3
), pp.
185
212
.10.1016/0167-6105(94)00091-Q
7.
Craft
,
T.
,
Launder
,
B.
, and
Suga
,
K.
,
1996
, “Development and Application of a Cubic Eddy-Viscosity Model of Turbulence,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
108
115
.10.1016/0142-727X(95)00079-6
8.
Saghafian
,
M.
,
Stansby
,
P.
,
Saidi
,
M.
, and
Apsley
,
D.
,
2003
, “Simulation of turbulent flows Around a Circular Cylinder Using Nonlinear Eddy-Viscosity Modelling: Steady and Oscillatory Ambient Flows,”
J. Fluids Struct.
,
17
(
8
), pp.
1213
1236
.10.1016/S0889-9746(03)00066-5
9.
Edwards
,
J. R.
,
Roy
,
C. J.
,
Blottner
,
F. G.
, and
Hassan
,
H. A.
,
2001
, “Development of a One-Equation Transition/Turbulence Model,”
AIAA J.
,
39
(
9
), pp.
1691
1698
.10.2514/2.1526
10.
Holloway
,
D. S.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “Prediction of Unsteady, Separated Boundary Layer Over a Blunt Body for Laminar, Turbulent, and Transitional flow,”
Int. J. Numer. Methods Fluids
,
45
(
12
), pp.
1291
1315
.10.1002/fld.739
11.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “A Correlation-Based Transition Model Using Local Variables–Part I: Model Formulation,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
12.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “A Correlation-Based Transition Model Using Local Variables–Part II: Test Cases and Industrial Applications,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
.10.1115/1.2184353
13.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.10.1115/1.2979230
14.
Lopez
,
M.
, and
Walters
,
D. K.
,
2016
, “Prediction of Transitional and Fully Turbulent Flow Using an Alternative to the Laminar Kinetic Energy Approach,”
J. Turbul.
,
17
(
3
), pp.
253
273
.10.1080/14685248.2015.1062509
15.
Ramadan
,
A.
,
Abd El-Rahman
,
A.
, and
Sabry
,
A.
,
2019
, “Assessment of the Transition k-kl-ω Model Application to Transitional Oscillatory Pipe Flows,”
J. Acoust. Soc. Am.
,
145
(
3
), pp.
1195
1204
.10.1121/1.5092605
16.
Chitta
,
V.
,
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2015
, “Sensitization of a Transition-Sensitive Linear Eddy-Viscosity Model to Rotation and Curvature Effects,”
ASME J. Fluids Eng.
,
137
(
3
), p. 031207.10.1115/1.4028627
17.
ANSYS
,
2019
,
ANSYS Fluent - CFD Software
,
ANSYS
, Inc. Canonsburg, PA.
18.
Lopez
,
M.
, and
Walters
,
D. K.
,
2017
, “A Recommended Correction to the ktklω Transition-Sensitive Eddy-Viscosity Model,”
ASME J. Fluids Eng.
,
139
(
2
), p. 024501.10.1115/1.4034875
19.
Rodríguez
,
I.
,
Lehmkuhl
,
O.
,
Chiva
,
J.
,
Borrell
,
R.
, and
Oliva
,
A.
,
2015
, “On the Flow Past a Circular Cylinder From Critical to Super-Critical Reynolds Numbers: Wake Topology and Vortex Shedding,”
Int. J. Heat Fluid Flow
,
55
, pp.
91
103
.10.1016/j.ijheatfluidflow.2015.05.009
20.
Durbin
,
P. A.
, and
Pettersson Reif
,
B. A.
,
2010
,
Models With Tensor Variables
,
John Wiley & Sons
, Hoboken, NJ, pp.
155
215
.
21.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge Mathematical Library, Cambridge University Press
, Cambridge, UK.
22.
Spitzer
,
R. E.
,
1965
, “
Measurements of Unsteady Pressures and Wake Fluctuations for Flow Over a Cylinder at Supercritical Reynolds Number
,” Ph.D. thesis,
California Institute of Technology
, Pasadena, CA.
23.
Schewe
,
G.
,
1983
, “On the Force Fluctuations Acting on a Circular Cylinder in Crossflow From Subcritical Up to Transcritical Reynolds Numbers,”
J. Fluid Mech.
,
133
, pp.
265
285
.10.1017/S0022112083001913
You do not currently have access to this content.