Abstract

Submerged inlets have the advantages of low drag, clean outer profile, and excellent stealth performance. Previous studies indicate that the zones of large total-pressure loss, located at the bottom and top regions of the exit plane, are the main cause of the poor aerodynamic performance in a submerged inlet. To improve the performance, a flow-control method is proposed in this paper, which includes both ramp side boundary layer bleeding and entrance side-edge vortex diverting. With numerical simulations, the efficacy of the proposed flow control is examined by comparing the aerodynamic performance and flow-field pattern of a baseline inlet and a controlled inlet over the typical flight envelope. The results prove that the proposed flow-control method can effectively discharge the low-energy flow of the forebody boundary layer on the ramp and isolate the major low-energy flow of the side-edge vortex. The proposed flow-control method results in a large improvement in the aerodynamic performance over the whole flight envelope. Specifically, the total pressure recovery (σ) of the inlet with the proposed flow-control features raises 3.06%, and the distortion (DC60) and the swirl distortion (SC60) lessen by 72.57% and 17.73%, respectively, in contrast to the baseline inlet under the engine matching point of cruise state (Ma0=0.72,α=2deg,β=0deg,Ma2=0.39).

References

1.
Sun
,
S.
, and
Guo
,
R. W.
,
2005
, “
Numerical Analysis and Experimental Validation of a Submerged Inlet on the Plane Surface
,”
Chin. J. Aeronaut.
,
18
(
3
), pp.
199
205
.10.1016/S1000-9361(11)60298-7
2.
Yu
,
A. Y.
,
Guo
,
R. W.
,
Sun
,
S.
, and
Xie
,
X. M.
,
2003
, “
Air-Admission Mechanism and Low Speed Tunnel Test of a Submerged Inlet With Low RCS Missile Body
,”
Acta Aerodyn. Sin.
,
21
(
2
), pp.
182
188
(In Chinese).
3.
Frick
,
C. W.
,
Davis
,
W. F.
,
Randall
,
L. M.
, and
Mossman
,
E. A.
,
1945
, “
An Experimental Investigation of NACA Submerged-Duct Entrances
,” NACA, Hampton, VA, Report No. ACR-5I20.
4.
Holzhauser
,
C. A.
,
1950
, “An Experimental Investigation at Large Scale of an NACA Submerged Intake and Deflector Installation on the Rearward Portion of a Fuselage,” NACA, Hampton, VA, Report No. RM-A50F13.
5.
Christiani
,
R. D.
, and
Randall
,
L. M.
,
1949
, “
A Preliminary Experimental Investigation of a Submerged Cascade Inlet
,” Report Archive and Image Library, NACA, Hampton, VA, Report No. RM-A9A24.
6.
Martin
,
N. J.
, and
Holzhauser
,
C. A.
,
1948
, “
An Experimental Investigation at Large Scale of Several Configurations of an NACA Submerged Air Intake
,” NACA, Hampton, VA, Report No. RM-A8F21.
7.
Pignier
,
N. J.
,
O'Reilly
,
C. J.
, and
Boij
,
S.
,
2016
, “
Aerodynamic and Aeroacoustic Analyses of a Submerged Air Inlet in a Low-Mach-Number Flow
,”
Comput. Fluids
,
133
, pp.
15
31
.10.1016/j.compfluid.2016.04.010
8.
Miansari
,
M.
,
Ghezelsofloo
,
S.
, and
Toghraie
,
D.
,
2020
, “
Numerical Investigation of Geometrical Design Effect on the Submerged Inlet Aerodynamics Characteristics
,”
Int. J. Aeronaut. Space Sci.
,
21
(
1
), pp.
25
38
.10.1007/s42405-019-00211-3
9.
Jin
,
G. L.
,
Jung
,
S. Y.
, and
Chang
,
S. A.
,
2004
, “
Numerical Simulation of Three-Dimensional Flows for Flush Inlet
,”
AIAA
Paper No. 2004-5190.10.2514/6.2004-5190
10.
Seddon
,
J.
, and
Goldsmith
,
E. L.
,
1999
,
Intake Aerodynamics
,
Blackwell Science
,
London
, pp.
338
340
.
11.
Guo
,
R. W.
, and
Liu
,
S. Y.
,
2002
, “
Design of Submerged Inlet
,”
J. Nanjing Univ. Aeronaut. Astronaut.
,
33
, pp.
8
12
.
12.
Yu
,
A. Y.
,
2003
, “
A Study of the Design and Flow Characteristics for a Submerged Inlet Under a Stealthy Shap
ed Fuselage,” Ph.D. dissertation,
Nanjing University of Aeronautics and Astronautics
, Nanjing/Jiangsu, China.
13.
Wang
,
Y. G.
,
Wang
,
C. H.
,
Xiao
,
Y. C.
,
Chen
,
B.
,
Zhou
,
S.
,
Guo
,
J. T.
, and
Sun
,
M. Y.
,
2016
, “
Construction Methodology for Lip Surface of a Submerged Inlet
,”
Aerosp. Sci. Technol.
,
54
, pp.
340
352
.10.1016/j.ast.2016.04.029
14.
Xie
,
W. Z.
,
Yang
,
S. Z.
,
Zeng
,
C.
,
Liao
,
K.
,
Ding
,
R. H.
,
Zhang
,
L.
, and
Guo
,
S.
,
2021
, “
Effects of Forebody Boundary Layer on the Performance of a Submerged Inlet
,”
Aeronaut. J.
,
125
(
1289
), p.
1260
.10.1017/aer.2021.8
15.
Taskinoglu
,
E. S.
, and
Knight
,
D. D.
,
2003
, “
Design Optimization for Submerged Inlets-Part I
,”
AIAA Paper No. 2003-1247.
16.
Taskinoglu
,
E. S.
,
Jovanovic
,
V.
, and
Knight
,
D. D.
,
2003
, “
Design Optimization for Submerged Inlets- Part II
,”
AIAA
Paper No. 2003-3926.10.2514/6.2003-3926
17.
Taskinoglu
,
E. S.
, and
Knight
,
D. D.
,
2004
, “
Multi-Objective Shape Optimization Study for a Subsonic Submerged Inlet
,”
J. Propul. Power
,
20
(
4
), pp.
620
633
.10.2514/1.5809
18.
Taskinoglu
,
E. S.
,
Jovanovic
,
V.
, and
Knight
,
D. D.
,
2004
, “
Multi-Objective Design Optimization and Experimental Measurements for a Submerged Inlet
,”
AIAA
Paper No. 2004-25.10.2514/6.2004-25
19.
Jovanovic
,
V. J.
,
Taskinoglu
,
E. S.
,
Knight
,
D. D.
, and
Elliott
,
G. S.
,
2006
, “
Experimental Investigation of a Submerged Subsonic Inlet
,”
J. Propul. Power
,
22
(
1
), pp.
214
216
.10.2514/1.15765
20.
Perez
,
C. C.
,
Ferreira
,
S. B.
,
Silva
,
L.
,
Jesus
,
A. B. D.
, and
Oliveira
,
G. L.
,
2007
, “
Computational Study of Submerged Air Inlet Performance Improvement Using Vortex Generators
,”
J. Aircr.
,
44
(
5
), pp.
1574
1587
.10.2514/1.25036
21.
Sun
,
S.
,
Tan
,
H. J.
, and
Wang
,
C. X.
,
2016
, “
Submerged Inlet Performance Enhancement Using a Unique Bump-Shaped Vortex Generator
,”
J. Propul. Power
,
32
(
5
), p.
1275
.10.2514/1.B36085
22.
Reynolds
,
T.
, and
Reeder
,
M. F.
,
2009
, “
Variation of Flow Control Configurations to Improve Submerged Inlet Uniformity
,”
AIAA
Paper No. 2009-1259.10.2514/6.2009-1259
23.
Cheng
,
D. S.
,
Tan
,
H. J.
,
Sun
,
S.
, and
Tong
,
Y.
,
2012
, “
Computational Study of a High-Performance Submerged Inlet With Bleeding Vortex
,”
J. Aircr.
,
49
(
3
), pp.
852
860
.10.2514/1.C031483
24.
Sun
,
S.
,
Guo
,
R. W.
, and
Wu
,
Y. Z.
,
2007
, “
Characterization and Performance Enhancement of Submerged Inlet With Flush-Mounted Planar Side Entrance
,”
J. Propul. Power
,
23
(
5
), pp.
987
995
.10.2514/1.26432
25.
Weng
,
P. F.
, and
Ding
,
J.
,
2003
, “
Numerical Analysis of Three-Dimensional Flows Inside/Outside a Submerged Air Inlet Under Maneuver
,”
AIAA
Paper No. 2003-4138.10.2514/6.2003-4138
26.
Rein
,
M.
, and
Koch
,
S.
,
2015
, “
Experimental Study of Boundary-Layer Ingestion Into a Diverterless S-Duct 446 Intake
,”
AIAA J.
,
53
(
11
), pp.
3487
3491
.10.2514/1.J053902
27.
Guo
,
R. W.
, and
Seddon
,
J.
,
1983
, “
The Swirl in an S-Duct of Typical Air Intake Proportions
,”
Aeronaut. Q.
,
34
(
2
), pp.
99
129
.10.1017/S0001925900009641
28.
Zachos
,
P. K.
,
Macmanus
,
D. G.
,
Prieto
,
D. G.
, and
Chiereghin
,
N.
,
2016
, “
Flow Distortion Measurements in Convoluted Aero Engine Intakes
,”
AIAA J.
,
54
(
9
), p.
2819
.10.2514/1.J054904
29.
Throckmorton
,
R.
,
Schetz
,
J. A.
, and
Jacobsen
,
L. S.
,
2010
, “
Experimental and Computational Investigation of a Dynamic Starting Method for Supersonic/Hypersonic Inlets
,”
AIAA
Paper 2010-589.10.2514/6.2010-589
30.
Fike
,
J. A.
,
Duraisamy
,
K.
,
Alonso
,
J. J.
,
Do
,
H.
,
Im
,
S. K.
, and
Cappellik
,
M. A.
,
2011
, “
Experimental and Computational Investigation of Mass Injection Induced Unstart
,”
AIAA
Paper 2011-3192.10.2514/6.2011-3192
31.
Dalle
,
D. J.
,
Fotia
,
M. L.
, and
Driscoll
,
J. F.
,
2010
, “
Reduced-Order Modeling of Two-Dimensional Supersonic Flows With Applications to Scramjet Inlets
,”
J. Propul. Power
,
26
(
3
), pp.
545
555
.10.2514/1.46521
32.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Model for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
33.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
34.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
, p.
330
.
35.
Roy
,
C. J.
,
McWherter-Payne
,
M. A.
, and
Oberkampf
,
W. L.
,
2003
, “
Verification and Validation for Laminar Hypersonic Flow Fields, Part 1: Verification
,”
AIAA J.
,
41
(
10
), pp.
1934
1943
.10.2514/2.1909
You do not currently have access to this content.