Abstract

The flow around curved tandem cylinders of equal diameter has been investigated for the first time, by means of direct numerical simulations. A convex configuration was used. The nominal gap ratio was L/D = 3.0 and a Reynolds number of 500 was chosen. Due to the change in effective gap ratio along the cylinder axis, there is a variation of tandem flow regimes, from alternating overshoot/reattachment, via stable reattachment, to co-shedding, in this case called gap shedding. The combination of reattachment and gap shedding gives near-zero drag and vertical forces for the downstream cylinder, whereas the corresponding forces on the upstream cylinder are comparable to single curved cylinders. Meanwhile, the opposite is true for the lift forces. A low-frequency variation of horizontal and vertical forces is seen, and this is attributed to a slow variation of the position where gap shedding commences. Finally, the concept of a critical angle is proposed to describe the transition to gap shedding, for a given combination of nominal gap ratio and Reynolds number.

References

1.
Ahmed
,
A.
,
2001
, “
Flow Field of a Curved Cylinder
,”
AIAA
Paper.10.2514/6.2001-602
2.
Miliou
,
A.
,
Sherwin
,
S. J.
, and
Graham
,
J. M. R.
,
2003
, “
Fluid Dynamic Loading on Curved Riser Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
18
(
1
), pp.
29
40
.10.1115/1.1576817
3.
Miliou
,
A.
,
Sherwin
,
S. J.
, and
Graham
,
J. M. R.
,
2003
, “
Wake Topology of Curved Cylinders at Low Reynolds Numbers
,”
Flow, Turb. Comb.
,
71
, pp.
157
160
.10.1023/B:AP P L.0000014920.94050.a2
4.
Miliou
,
A.
,
De Vecchi
,
A.
,
Sherwin
,
S. J.
, and
Graham
,
J. M. R.
,
2007
, “
Wake Dynamics of External Flow Past a Curved Cylinder With Free Stream Aligned With the Plane of Curvature
,”
J. Fluid Mech.
,
592
, pp.
89
115
.10.1017/S0022112007008245
5.
Lee
,
S.
,
Paik
,
K.-J.
, and
Srinil
,
N.
,
2020
, “
Wake Dynamics of a 3D Curved Cylinder in Oblique Flows
,”
Int. J. Nav. Arch. Ocean Eng.
,
12
, pp.
501
517
.10.1016/j.ijnaoe.2020.07.005
6.
Shang
,
J. K.
,
Stone
,
H. A.
, and
Smits
,
A. J.
,
2018
, “
Flow Past Finite Cylinders of Constant Curvature
,”
J. Fluid Mech.
,
837
, pp.
896
915
.10.1017/jfm.2017.884
7.
Jiang
,
F.
,
Pettersen
,
B.
,
Andersson
,
H. I.
,
Kim
,
J.
, and
Kim
,
S.
,
2018
, “
Wake Behind a Concave Curved Cylinder
,”
Phys. Rev. Fluids
,
3
(
9
), p.
094804
.10.1103/PhysRevFluids.3.094804
8.
Jiang
,
F.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2018
, “
Influences of Upstream Extensions on Flow Around a Curved Cylinder
,”
Eur. J. Mech. B Fluids
,
67
, pp.
79
86
.10.1016/j.euromechflu.2017.08.006
9.
Jiang
,
F.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2019
, “
Turbulent Wake Behind a Concave Curved Cylinder
,”
J. Fluid Mech.
,
878
, pp.
663
699
.10.1017/jfm.2019.648
10.
de Vecchi
,
A.
,
Sherwin
,
S. J.
, and
Graham
,
J. M. R.
,
2008
, “
Wake Dynamics of External Flow Past a Curved Circular Cylinder With the Free-Stream Aligned to the Plane of Curvature
,”
J. Fluids Struct.
,
24
(
8
), pp.
1262
270
.10.1016/j.jfluidstructs.2008.06.008
11.
Assi
,
G.
,
Srinil
,
N.
,
Freire
,
C.
, and
Korkischko
,
I.
,
2014
, “
Experimental Investigation of the Flow-Induced Vibration of a Curved Cylinder in Convex and Concave Configurations
,”
J. Fluids Struct.
,
44
, pp.
52
66
.10.1016/j.jfluidstructs.2013.10.011
12.
Seyed-Aghazadeh
,
B.
,
Budz
,
C.
, and
Modarres-Sadeghi
,
Y.
,
2015
, “
The Influence of Higher Harmonic Flow Forces on the Response of a Curved Circular Cylinder Undergoing Vortex-Induced Vibration
,”
J. Sound Vib.
,
353
, pp.
395
406
.10.1016/j.jsv.2015.04.036
13.
Srinil
,
N.
,
Ma
,
B.
, and
Zhang
,
L.
,
2018
, “
Experimental Investigation on in-Plane/Out-of-Plane Vortex-Induced Vibrations of Curved Cylinder in Parallel and Perpendicular Flows
,”
J. Sound Vib.
,
421
, pp.
275
299
.10.1016/j.jsv.2018.02.021
14.
Gallardo
,
J. P.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2011
, “
Dynamics in the Wake of a Curved Circular Cylinder
,”
13th European Turbulence Conference (ETC2013)
, Vol.
318
, Warsaw, Poland, Sept. 12–15, p.
062008
.
15.
Gallardo
,
J.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2013
, “
Effect of Free-Slip Boundary Conditions on the Flow Around a Curved Circular Cylinder
,”
Comput. Fluids
,
86
, pp.
389
394
.10.1016/j.compfluid.2013.07.023
16.
Gallardo
,
J.
,
Andersson
,
H. I.
, and
Pettersen
,
B.
,
2014
, “
Turbulent Wake Behind a Curved Circular Cylinder
,”
J. Fluid Mech.
,
742
, pp.
192
229
.10.1017/jfm.2013.622
17.
Gallardo
,
J.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2014
, “
Coherence and Reynolds Stresses in Turbulent Wake Behind a Curved Circular Cylinder
,”
J. Turbul.
,
15
(
12
), pp.
883
904
.10.1080/14685248.2014.944617
18.
Xu
,
G.
, and
Zhou
,
Y.
,
2004
, “
Strouhal Numbers in the Wake of Two Inline Cylinders
,”
Exp. Fluids
,
37
(
2
), pp.
248
256
.10.1007/s00348-004-0808-0
19.
Zdravkovich
,
M. M.
,
1987
, “
The Effect of Interference Between Circular Cylinders in Cross Flow
,”
J. Fluids Struct.
,
1
(
2
), pp.
239
261
.10.1016/S0889-9746(87)90355-0
20.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.10.1016/j.jfluidstructs.2010.07.001
21.
Gao
,
Y.
,
He
,
J.
,
Ong
,
M. C.
,
Zhao
,
M.
, and
Wang
,
L.
,
2021
, “
Three-Dimensional Numerical Investigation on Flow Past Two Side-by-Side Curved Cylinders
,”
Ocean Eng.
,
234
, p.
109167
.10.1016/j.oceaneng.2021.109167
22.
Zhu
,
H.
,
Wang
,
R.
,
Bao
,
Y.
,
Zhou
,
D.
,
Ping
,
H.
,
Han
,
Z.
, and
Sherwin
,
S. J.
,
2019
, “
Flow Over a Symmetrically Curved Circular Cylinder With the Free Stream Parallel to the Plane of Curvature at Low Reynolds Number
,”
J. Fluids Struct.
,
87
, pp.
23
38
.10.1016/j.jfluidstructs.2019.03.012
23.
Manhart
,
M.
,
2004
, “
A Zonal Grid Algorithm for DNS of Turbulent Boundary Layers
,”
Comput. Fluids
,
33
(
3
), pp.
435
461
.10.1016/S0045-7930(03)00061-6
24.
Peller
,
N.
,
Le Duc
,
A.
,
Tremblay
,
T.
, and
Manhart
,
M.
,
2006
, “
High-Order Stable Interpolations for Immersed Boundary Methods
,”
Int. J. Num. Meth. Fluids
,
52
(
11
), pp.
1175
1193
.10.1002/fld.1227
25.
Thakur
,
A.
,
Liu
,
X.
, and
Marshall
,
J. S.
,
2004
, “
Wake Flow of Single and Multiple Yawed Cylinders
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
861
870
.10.1115/1.1792276
26.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid. Mech.
,
28
(
1
), pp.
477
539
.10.1146/annurev.fl.28.010196.002401
27.
Papaioannou
,
G.
,
Yue
,
D. K. P.
,
Triantafyllou
,
M.
, and
Karniadakis
,
G. E.
,
2006
, “
Three-Dimensionality Effects in Flow Around Two Tandem Cylinders
,”
J. Fluid Mech.
,
558
, pp.
387
413
.10.1017/S0022112006000139
28.
Song
,
Y.
, and
Zhu
,
R.
,
2017
, “
A Numerical Study of Flow Patterns, Drag and Lift for Low Reynolds Number Flow Past Tandem Cylinders of Various Shapes
,”
ASME
Paper No. IMECE2017-70089.10.1115/IMECE2017-70089
29.
Zhou
,
Q.
,
Alam
,
M.
,
Cao
,
S.
,
Liao
,
H.
, and
Li
,
M.
,
2019
, “
Numerical Study of Wake and Aerodynamic Forces on Two Tandem Circular Cylinders at Re 1000
,”
Phys. Fluids
,
31
(
4
), p.
045103
.10.1063/1.5087221
30.
Kitagawa
,
T.
, and
Ohta
,
H.
,
2008
, “
Numerical Investigation on Flow Around Circular Cylinders in Tandem Arrangement at a Subcritical Reynolds Number
,”
J. Fluids Struct.
,
24
(
5
), pp.
680
699
.10.1016/j.jfluidstructs.2007.10.010
31.
Lee
,
T.
, and
Basu
,
S.
,
1997
, “
Nonintrusive Measurements of the Boundary Layer Developing on a Single and Two Cylinders
,”
Exp. Fluids
,
23
(
3
), pp.
187
192
.10.1007/s003480050101
32.
Arie
,
M.
,
Kiya
,
M.
,
Moriya
,
M.
, and
Mori
,
H.
,
1983
, “
Pressure Fluctuations on the Surface of Two Circular Cylinders in Tandem Arrangement
,”
ASME J. Fluids Eng.
,
105
(
2
), pp.
161
167
.10.1115/1.3240956
33.
Igarashi
,
T.
,
1981
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem (1st Report)
,”
Bull. JSME
,
24
(
188
), pp.
323
330
.10.1299/jsme1958.24.323
34.
Lin
,
J.-C.
,
Yang
,
Y.
, and
Rockwell
,
D.
,
2002
, “
Flow Past Two Cylinders in Tandem: Instantaneous and Averaged Flow Structure
,”
J. Fluids Struct.
,
16
(
8
), pp.
1059
1071
.10.1006/jfls.2002.0469
You do not currently have access to this content.