Abstract

The quantification and damping of slosh responses are significant due to the increasing demand for safety of the liquid-based applications under severe external excitation. Recently, the solid or perforated baffle plates have been used to damp the slosh response of the liquid. However, there is uncertainty in the selection of an effective configuration of the baffle plates. In addition, most of the studies reported the slosh response under surge excitation. Therefore, this study focuses on the slosh response of the rectangular tank fitted with perforated baffle plates of different configurations under pitch excitation. For this, the liquid sloshing is simulated using the concepts of computational fluid dynamics (CFD) using pressure-based solver in the time domain. A detailed parametric study is carried out to develop an effective configuration of the perforated baffle plates considering the area of perforations, interperforation distance, size of perforations, distance between the perforated baffle plates, alignment of perforations, and the vertical position of perforated baffle plate as the parameters. The slosh responses are observed in terms of free surface elevation, hydrodynamic pressure, turbulence kinetic energy, velocity streamlines, power spectral density corresponding to the free surface elevation and the free surface deformation. The study developed a “zig-zag blocking alignment” of perforations for effective slosh damping, with the solid area between the perforations being 50%–60% of the area of perforations. In addition, “single-acting range” and “damping range” are identified to pilot the positioning of the multiple baffle plates in a rectangular tank under pitch excitation.

References

1.
Akyıldız
,
H.
,
Erdem Ünal
,
N.
, and
Aksoy
,
H.
,
2013
, “
An Experimental Investigation of the Effects of the Ring Baffles on Liquid Sloshing in a Rigid Cylindrical Tank
,”
Ocean Eng.
,
59
, pp.
190
197
.10.1016/j.oceaneng.2012.12.018
2.
Akyildiz
,
H.
, and
Ünal
,
E.
,
2005
, “
Experimental Investigation of Pressure Distribution on a Rectangular Tank Due to the Liquid Sloshing
,”
Ocean Eng.
,
32
(
11–12
), pp.
1503
1516
.10.1016/j.oceaneng.2004.11.006
3.
Housner
,
G. W.
,
1963
, “
The Dynamic Behavior of Water Tanks
,”
Bull. Seismol. Soc. Am.
,
53
(
2
), pp.
381
387
.10.1785/BSSA0530020381
4.
Haroun
,
M. A.
, and
A.Tayel
,
M.
,
1985
, “
Axisymmetrical Vibrations of Tanks—Numerical
,”
J. Eng. Mech.
,
111
(
3
), pp.
329
345
.10.1061/(ASCE)0733-9399(1985)111:3(329)
5.
Nayak
,
S. K.
, and
Biswal
,
K. C.
,
2015
, “
Fluid Damping in Rectangular Tank Fitted With Various Internal Objects—An Experimental Investigation
,”
Ocean Eng.
,
108
, pp.
552
562
.10.1016/j.oceaneng.2015.08.042
6.
Kangda
,
M. Z.
,
Sawant
,
S. S.
, and
Jaiswal
,
O. R.
,
2019
, “
Sloshing in Liquid Storage Tanks With Internal Obstructions
,”
Recent Advances in Structural Engineering
,
Springer Nature
,
Singapore
.10.1007/978-981-13-0365-4_1
7.
Nimisha
,
P.
,
Jayalekshmi
,
B. R.
, and
Venkataramana
,
K.
,
2021
, “
Study of Dynamic Characteristics of Circular Liquid Storage Tanks Using Acoustic Principles
,”
Lect. Notes Civ. Eng.
,
105
, pp.
125
135
.10.1007/978-981-15-8293-6
8.
Nimisha
,
P.
,
Jayalekshmi
,
B. R.
, and
Venkataramana
,
K.
,
2022
, “
Parametric Study on Frequency Characteristics of Cylindrical Liquid Tanks
,”
J. Inst. Eng.: Ser. A
, epub.10.1007/s40030-022-00646-0
9.
Haroun
,
M. A.
,
1983
, “
Vibration Studies and Tests of Liquid Storage Tanks
,”
Earthquake. Eng. Struct. Dyn.
,
11
(
2
), pp.
179
206
.10.1002/eqe.4290110204
10.
Je
,
S. Y.
,
Chang
,
Y. S.
, and
Kang
,
S. S.
,
2017
, “
Dynamic Characteristics Assessment of Reactor Vessel Internals With Fluid–Structure Interaction
,”
Nucl. Eng. Technol.
,
49
(
7
), pp.
1513
1523
.10.1016/j.net.2017.05.003
11.
Shakib
,
H.
, and
Alemzadeh
,
H.
,
2017
, “
The Effect of Earthquake Site-Source Distance on Dynamic Response of Concrete Elevated Water Tanks
,”
Procedia Eng.
,
199
, pp.
260
265
.10.1016/j.proeng.2017.09.020
12.
Rawat
,
A.
,
Mittal
,
V.
,
Chakraborty
,
T.
, and
Matsagar
,
V.
,
2019
, “
Earthquake Induced Sloshing and Hydrodynamic Pressures in Rigid Liquid Storage Tanks Analyzed by Coupled Acoustic-Structural and Euler–Lagrange Methods
,”
Thin Walled Struct.
,
134
, pp.
333
346
.10.1016/j.tws.2018.10.016
13.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J. P.
,
1982
, “
An Arbitrary Lagrangian–Eulerian Finite Element for Transient Dynamic Fluid–Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
33
(
1–3
), pp.
689
723
.10.1016/0045-7825(82)90128-1
14.
Livaoglu
,
R.
, and
Dogangun
,
A.
,
2006
, “
Simplified Seismic Analysis Procedures for Elevated Tanks Considering Fluid–Structure–Soil Interaction
,”
J. Fluids Struct.
,
22
, pp.
421
439
.10.1016/j.jfluidstructs.2005.12.004
15.
Kumar
,
K.
, and
Maity
,
D.
,
2016
, “
Nonlinear Finite Element Analysis of Water in Rectangular Tank
,”
Ocean Eng.
,
121
, pp.
592
601
.10.1016/j.oceaneng.2016.05.048
16.
Cho
,
J.
,
Lee
,
H. W.
, and
Kim
,
K. W.
,
2002
, “
Free Vibration Analysis of Baffled Liquid- Storage Tanks by the Structural-Acoustic Finite Element Formulation
,”
J. Sound Vib.
,
258
(
5
), pp.
847
866
.10.1006/jsvi.2002.5185
17.
Biswal
,
K. C.
,
Bhattacharyya
,
S. K.
, and
Sinha
,
P. K.
,
2006
, “
Non-Linear Sloshing in Partially Liquid Filled Containers With Baffles
,”
Int. J. Numer. Methods Eng.
,
68
(
3
), pp.
317
337
.10.1002/nme.1709
18.
Hasheminejad
,
S. M.
, and
Aghabeigi
,
M.
,
2012
, “
Sloshing Characteristics in Half-Full Horizontal Elliptical Tanks With Vertical Baffles
,”
Appl. Math. Model.
,
36
(
1
), pp.
57
71
.10.1016/j.apm.2011.02.026
19.
Evans
,
D. V.
, and
McIver
,
P.
,
1987
, “
Resonant Frequencies in a Container With a Vertical Baffle
,”
J. Fluid Mech.
,
175
, pp.
295
307
.10.1017/S0022112087000399
20.
Hasheminejad
,
S. M.
, and
Mohammadi
,
M. M.
,
2011
, “
Effect of Anti-Slosh Baffles on Free Liquid Oscillations in Partially Filled Horizontal Circular Tanks
,”
Ocean Eng.
,
38
(
1
), pp.
49
62
.10.1016/j.oceaneng.2010.09.010
21.
Maleki
,
A.
, and
Ziyaeifar
,
M.
,
2007
, “
Damping Enhancement of Seismic Isolated Cylindrical Liquid Storage Tanks Using Baffles
,”
Eng. Struct.
,
29
(
12
), pp.
3227
3240
.10.1016/j.engstruct.2007.09.008
22.
Younes
,
M. F.
,
Younes
,
Y. K.
,
El-Madah
,
M.
,
Ibrahim
,
I. M.
, and
El-Dannanh
,
E. H.
,
2007
, “
An Experimental Investigation of Hydrodynamic Damping Due to Vertical Baffle Arrangements in a Rectangular Tank
,”
Proc. Inst. Mech. Eng., Part M
,
221
(
3
), pp.
115
123
.10.1243/14750902JEME59
23.
Firouz-Abadi
,
R. D.
,
Haddadpour
,
H.
,
Noorian
,
M. A.
, and
Ghasemi
,
M.
,
2008
, “
A 3D BEM Model for Liquid Sloshing in Baffled Tanks
,”
Int. J. Numer. Methods Eng.
,
76
(
9
), pp.
1419
1433
.10.1002/nme.2363
24.
Panigrahy
,
P. K.
,
Saha
,
U. K.
, and
Maity
,
D.
,
2009
, “
Experimental Studies on Sloshing Behavior Due to Horizontal Movement of Liquids in Baffled Tanks
,”
Ocean Eng.
,
36
(
3–4
), pp.
213
222
.10.1016/j.oceaneng.2008.11.002
25.
Kargbo
,
O.
,
Xue
,
M. A.
, and
Zheng
,
J.
,
2019
, “
Multiphase Sloshing and Interfacial Wave Interaction With a Baffle and a Submersed Block
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071301
.10.1115/1.4041988
26.
Biswal
,
K. C.
,
Bhattacharyya
,
S. K.
, and
Sinha
,
P. K.
,
2003
, “
Free-Vibration Analysis of Liquid-Filled Tank With Baffles
,”
J. Sound Vib.
,
259
(
1
), pp.
177
192
.10.1006/jsvi.2002.5087
27.
Akyildiz
,
H.
,
2012
, “
A Numerical Study of the Effects of the Vertical Baffle on Liquid Sloshing in Two-Dimensional Rectangular Tank
,”
J. Sound Vib.
,
331
(
1
), pp.
41
52
.10.1016/j.jsv.2011.08.002
28.
Hasheminejad
,
S. M.
,
Mohammadi
,
M. M.
, and
Jarrahi
,
M.
,
2014
, “
Liquid Sloshing in Partly-Filled Laterally-Excited Circular Tanks Equipped With Baffles
,”
J. Fluids Struct.
,
44
, pp.
97
114
.10.1016/j.jfluidstructs.2013.09.019
29.
Biswal
,
K. C.
,
Bhattacharyya
,
S. K.
, and
Sinha
,
P. K.
,
2004
, “
Dynamic Response Analysis of a Liquid-Filled Cylindrical Tank With Annular Baffle
,”
J. Sound Vib.
,
274
(
1–2
), pp.
13
37
.10.1016/S0022-460X(03)00568-6
30.
Sanapala
,
V. S.
,
Rajkumar
,
M.
,
Velusamy
,
K.
, and
Patnaik
,
B. S. V.
,
2018
, “
Numerical Simulation of Parametric Liquid Sloshing in a Horizontally Baffled Rectangular Container
,”
J. Fluids Struct.
,
76
, pp.
229
250
.10.1016/j.jfluidstructs.2017.10.001
31.
Goudarzi
,
M. A.
,
Sabbagh-Yazdi
,
S. R.
, and
Marx
,
W.
,
2010
, “
Investigation of Sloshing Damping in Baffled Rectangular Tanks Subjected to the Dynamic Excitation
,”
Bull. Earthquake Eng.
,
8
(
4
), pp.
1055
1072
.10.1007/s10518-009-9168-8
32.
Eswaran
,
M.
,
Saha
,
U. K.
, and
Maity
,
D.
,
2009
, “
Effect of Baffles on a Partially Filled Cubic Tank: Numerical Simulation and Experimental Validation
,”
Comput. Struct.
,
87
(
3–4
), pp.
198
205
.10.1016/j.compstruc.2008.10.008
33.
Jin
,
H.
,
Liu
,
Y.
, and
Li
,
H. J.
,
2014
, “
Experimental Study on Sloshing in a Tank With an Inner Horizontal Perforated Plate
,”
Ocean Eng.
,
82
, pp.
75
84
.10.1016/j.oceaneng.2014.02.024
34.
Mi-an
,
X.
,
Peng-zhi
,
L.
,
Jin-hai
,
Z.
,
Xiao-li
,
Y.
, and
Nguyen
,
V.-T.
,
2013
, “
Effects of Perforated Baffle on Reducing Sloshing in Rectangular Tank—Experimental and Numerical Study
,”
China Ocean Eng.
,
27
(
5
), pp.
615
628
.10.1007/s13344-013-0052-6
35.
Xue
,
M. A.
,
Zheng
,
J.
,
Lin
,
P.
, and
Yuan
,
X.
,
2017
, “
Experimental Study on Vertical Baffles of Different Configurations in Suppressing Sloshing Pressure
,”
Ocean Eng.
,
136
, pp.
178
189
.10.1016/j.oceaneng.2017.03.031
36.
Xue
,
M. A.
,
Zheng
,
J.
, and
Lin
,
P.
,
2012
, “
Numerical Simulation of Sloshing Phenomena in Cubic Tank With Multiple Baffles
,”
J. Appl. Math.
,
2012
, pp.
1
21
.10.1155/2012/245702
37.
Kumar
,
A.
, and
Sinhamahapatra
,
K. P.
,
2013
, “
Effects of Porous Internal Components on Liquid Slosh Dynamics
,”
J. Porous Media
,
16
(
8
), pp.
725
747
.10.1615/JPorMedia.v16.i8.40
38.
Yu
,
Y. M.
,
2021
, “
Experimental Studies on Sloshing Mitigation Using Dual Perforated Floating Plates in a Rectangular Tank
,”
China Ocean Eng.
,
35
(
2
), pp.
301
307
.10.1007/s13344-021-0027-y
39.
Demirel
,
E.
, and
Aral
,
M. M.
,
2018
, “
Liquid Sloshing Damping in an Accelerated Tank Using a Novel Slot-Baffle Design
,”
Water
, 10(11), pp.
1
12
.10.3390/w10111565
40.
Bellezi
,
C. A.
,
Cheng
,
L. Y.
,
Okada
,
T.
, and
Arai
,
M.
,
2019
, “
Optimized Perforated Bulkhead for Sloshing Mitigation and Control
,”
Ocean Eng.
,
187
, p.
106171
.10.1016/j.oceaneng.2019.106171
41.
Nasar
,
T.
,
Sannasiraj
,
S. A.
, and
Sundar
,
V.
,
2021
, “
Performance Assessment of Porous Baffle on Liquid Sloshing Dynamics in a Barge Carrying Liquid Tank
,”
Ships Offshore Struct.
,
16
(
7
), pp.
773
786
.10.1080/17445302.2020.1781746
42.
Faltinsen
,
O. M.
, and
Timokha
,
A.
,
2009
,
Sloshing
,
Cambridge University Press
,
New York
.
43.
Cho
,
J. R.
, and
Lee
,
H. W.
,
2004
, “
Numerical Study on Liquid Sloshing in Baffled Tank by Nonlinear Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
23–26
), pp.
2581
2598
.10.1016/j.cma.2004.01.009
44.
Wang
,
W.
,
Guo
,
Z.
,
Peng
,
Y.
, and
Zhang
,
Q.
,
2016
, “
A Numerical Study of the Effects of the T-Shaped Baffles on Liquid Sloshing in Horizontal Elliptical Tanks
,”
Ocean Eng.
,
111
, pp.
543
568
.10.1016/j.oceaneng.2015.11.020
45.
Ren
,
L.
,
Zou
,
Y.
,
Tang
,
J.
,
Jin
,
X.
,
Li
,
D.
, and
Liu
,
M.
,
2021
, “
Numerical Modeling of Coupled Surge-Heave Sloshing in a Rectangular Tank With Baffles
,”
Shock Vib.
,
2021
, pp.
1
11
.10.1155/2021/5545635
46.
Tryggeson
,
H.
,
2007
,
Analytical Vortex Solutions to the Navier–Stokes Equation
,
Växjö University Press
,
Sweden
.
47.
ANSYS,
2018
,
ANSYS 19.2 FLUENT User's Guide
,
15317
,
ANSYS Inc.
,
Canonsburg, PA
.
48.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
49.
Thiagarajan
,
K. P.
,
Rakshit
,
D.
, and
Repalle
,
N.
,
2011
, “
The Airwater Sloshing Problem: Fundamental Analysis and Parametric Studies on Excitation and Fill Levels
,”
Ocean Eng.
,
38
(
2–3
), pp.
498
508
.10.1016/j.oceaneng.2010.11.019
50.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
51.
Rhee
,
S. H.
,
2005
, “
Unstructured Grid Based Reynolds-Averaged Navier-Stokes Method for Liquid Tank Sloshing
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
572
582
.10.1115/1.1906267
52.
ANSYS,
2011
,
ANSYS Mechanical APDL Element Reference
,
ANSYS Inc
.,
Canonsburg, PA
.
53.
ANSYS,
2013
,
ANSYS Mechanical APDL Theory Reference
,
ANSYS, Inc
.,
Canonsburg, PA
.
54.
Moslemi
,
M.
, and
Kianoush
,
M. R.
,
2012
, “
Parametric Study on Dynamic Behavior of Cylindrical Ground-Supported Tanks
,”
Eng. Struct.
,
42
, pp.
214
230
.10.1016/j.engstruct.2012.04.026
55.
Xue
,
M. A.
, and
Lin
,
P.
,
2011
, “
Numerical Study of Ring Baffle Effects on Reducing Violent Liquid Sloshing
,”
Comput. Fluids
,
52
(
1
), pp.
116
129
.10.1016/j.compfluid.2011.09.006
You do not currently have access to this content.