Abstract

This study investigates the fluid dynamics and performance characteristics in micronozzle flows with changes in various geometric parameters using Navier–Stokes simulation based on slip wall boundary conditions. The various geometric parameters considered for the study are (1) area ratio with fixed throat dimension and (2) the semidivergence angle variation with no change in area ratio. The simulation results show that the flow choking for micronozzle happens not at the geometric throat; rather pushed downstream to the divergent channel of the nozzle. This is due to the thick boundary layer growth, which reduces the effective flow area and shifts the minimum allowable flow area downstream to the throat. The distance to which the choking point shifts downstream to the throat reduces with Maxwell's slip wall conditions compared to the conventional no-slip wall condition. The downstream movement of the choking point from the throat reduces with an increase in area ratio and with increase in divergence angle with fixed area ratio. This is due to the fact that the increase in area ratio and divergence angle increases the nozzle height at any particular section in the divergent portion of the nozzle. As a result of this, the boundary layer profile also moves upward and the restriction of potential core by the thick boundary layer reduces, which in turn leads to an increase in the effective minimum flow area downstream to the throat.

References

1.
Micci
,
M. M.
, and
Ketsdever
,
A. D.
,
2000
,
Micropropulsion for Small Spacecraft
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
2.
Mohamed
,
G. H.
,
2006
,
The MEMS Handbook
,
CRC/Taylor & Francis
, Boca Raton FL.
3.
Rothe
,
D. E.
,
1971
, “
Electron-Beam Studies of Viscous Flow in Supersonic Nozzles
,”
AIAA J.
,
9
(
5
), pp.
804
811
.10.2514/3.6279
4.
Bayt
,
R. L.
,
Ayon
,
A. A.
, and
Breuer
,
K. S.
,
1997
, “
A Performance Evaluation of MEMS-Based Micronozzles
,”
AIAA
Paper No. 1997-3169. 10.2514/6.1997-3169
5.
Bayt
,
R. L.
, and
Breuer
,
K. S.
,
2000
, “
Fabrication and Testing of Micron-Sized Cold-Gas Thrusters (Micropropulsion for Small Spacecraft)
,” Progress in Astronautics and Aeronautics,
P.
Zarchan
, ed.,
American Institute of Aeronautics and Astronautics, Inc
.,
Reston, VA
, pp.
381
397
.
6.
Bayt
,
R. L.
, and
Breuer
,
K. S.
,
2001
, “
Systems Design and Performance of Hot and Cold Supersonic Microjets
,”
AIAA
Paper No. 2001-0721.10.2514/6.2001-721
7.
Choudhuri
,
A. R.
,
Baird
,
B.
,
Gollahalli
,
S. R.
, and
Schneider
,
S. J.
,
2001
, “
Effects of Geometry and Ambient Pressure on Micronozzle Flow
,”
AIAA
Paper No. 2001-3331.10.2514/6.2001-3331
8.
Reed
,
B. D.
,
Groot
,
W.
, and
Dang
,
L.
,
2001
, “
Experimental Evaluation of Cold Flow Micronozzles
,”
AIAA
Paper No. 2001-3521.10.2514/6.2001-3521
9.
Ivanov
,
M. S.
,
Markelov
,
G. N.
,
Ketsdever
,
A. D.
, and
Wadsworth
,
D. C.
,
1999
, “
Numerical Study of Cold Gas Micronozzle Flows
,”
AIAA
Paper No. 99-0166.10.2514/6.1999-166
10.
Alexeenko
,
A. A.
,
Levin
,
D. A.
,
Gimelshein
,
S. F.
,
Collins
,
R. J.
, and
Reed
,
B. D.
,
2002
, “
Numerical Modeling of Axisymmetric and Three-Dimensional Flows in Microelectromechanical Systems Nozzles
,”
AIAA J.
,
40
(
5
), pp.
897
904
.10.2514/2.1726
11.
Jamison
,
A. J.
, and
Ketsdever
,
A. D.
,
2003
, “
Low Reynolds Number Performance Comparison of an Underexpanded Orifice and a DeLaval Nozzle
,”
AIP Conference Proceedings, Rarefied Gas Dynamics: 23rd International Symposium
, Vol.
663
, Whistler, British Columbia, Canada, Jul. 20–25, 2003, pp.
557
564
.10.1063/1.1581594
12.
Moríñigo
,
J. A.
,
Quesada
,
J. H.
, and
Requena
,
F. C.
,
2007
, “
Slip-Model Performance for Underexpanded Micro-Scale Rocket Nozzle Flows
,”
J. Therm. Sci.
,
16
(
3
), pp.
223
230
.10.1007/s11630-007-0223-y
13.
Liu
,
M.
,
Zhang
,
X.
,
Zhang
,
G.
, and
Chen
,
Y.
,
2006
, “
Study on Micronozzle Flow and Propulsion Performance Using DSMC and Continuum Methods
,”
Acta Mech. Sin./Lixue Xuebao
,
22
(
5
), pp.
409
416
.10.1007/s10409-006-0020-y
14.
Lin
,
C. X.
, and
Gadepalli
,
V. V. V.
,
2009
, “
A Computational Study of Gas Flow in a De-Laval Micronozzle at Different Throat Diameters
,”
Int. J. Numer. Methods Fluids
,
59
(
11
), pp.
1203
1216
.10.1002/fld.1868
15.
Chong
,
X.
,
2007
, “
Characteristics of Micronozzle Gas Flows
,”
Phys. Fluids
,
19
(
3
), p.
37102
.10.1063/1.2709707
16.
Hao
,
P. F.
,
Ding
,
Y. T.
,
Yao
,
Z. H.
,
He
,
F.
, and
Zhu
,
K. Q.
,
2005
, “
Size Effect on Gas Flow in Micro Nozzles
,”
J. Micromech. Microeng.
,
15
(
11
), pp.
2069
2073
.10.1088/0960-1317/15/11/011
17.
San
,
O.
,
Bayraktar
,
I.
, and
Bayraktar
,
T.
,
2009
, “
Size and Expansion Ratio Analysis of Micro Nozzle Gas Flow
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
402
411
.10.1016/j.icheatmasstransfer.2009.01.021
18.
Torre
,
F. L.
,
Kenjeres
,
S.
,
Kleijn
,
C. R.
, and
Moerel
,
J. P. A.
,
2009
, “
Evaluation of Micronozzle Performance Through DSMC, Navier-Stokes and Coupled DSMC/Navier-Stokes Approaches
,”
Computational Science-ICCS 2009, Lecture Notes in Computer Science
, Vol.
5544
,
G.
Allen
,
J.
Nabrzyski
,
E.
Seidel
,
G. D. V
Albada
,
J.
Dongarra
, and
P. M. A.
Sloot
, eds.,
Springer
,
Berlin, Heidelberg
.
19.
Jebauer
,
S.
, and
Czerwinska
,
J.
,
2007
,
Implementation of Velocity Slip and Temperature Jump Boundary Conditions for Microfluidic Devices
,
Polish Academy of Sciences
, IFTR Report No. 5/2007.
20.
Kumar
,
R. A.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
,
2014
, “
Computational Analysis of the Wave Motions in Micro-Shock Tube Flow
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
228
(
4
), pp.
594
610
.10.1177/0954410013478702
21.
K.
,
BeskokAluru
,
2005
,
Microflows and Nanoflows-Fundamentals and Simulation
,
Springer
,
New York
.
22.
K. R
,
A.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
,
2013
, “
Effect of Finite Diaphragm Rupture Process on Microshock Tube Flows
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081203
.10.1115/1.4024196
23.
Zeitoun
,
D. E.
, and
Burtschell
,
Y.
,
2006
, “
Navier-Stokes Computations in Micro Shock Tubes
,”
Shock Waves
,
15
(
3–4
), pp.
241
246
.10.1007/s00193-006-0023-4
24.
Shimshi
,
E.
,
Ben-Dor
,
G.
, and
Levy
,
A.
,
2009
, “
Viscous Simulation of Shock-Reflection Hysteresis in Overexpanded Planar Nozzles
,”
J. Fluid Mech.
,
635
, pp.
189
206
.10.1017/S002211200900771X
25.
Zucker
,
R. D.
, and
Biblarz
,
O.
,
2019
,
Fundamentals of Gas Dynamics
, 3rd ed.,
Wiley,
Hoboken, NJ.
You do not currently have access to this content.