Abstract

In this study, skin friction around a ½-scale Ahmed body was measured experimentally at a Reynolds number of Re = 2 × 105. The slant angle of the Ahmed body was 25 deg, and the yaw angles ranged from 0 deg to 8 deg. This study focused on the flow structure on the slant surface under different cross-wind conditions. A force balance system was applied to measure the aerodynamic drag of the model. The global skin-friction topology was measured by applying a luminescent oil layer with a subgrid data processing algorithm. The method used to measure the skin friction was conducted for the first time on the Ahmed body. The results indicated that the technique is highly capable of extracting the skin-friction topology. For a yaw angle below 3 deg, the flow on the slant surface was not significantly affected by the cross-wind condition, and the drag of the model was nearly constant. However, at yaw angles above 3 deg, the flow on the slant surface was highly affected by the roof longitudinal vortexes on the windward side, leading to a dramatic increase in the drag of the model. High consistency in the drag and skin-friction fields was observed. The detailed skin-friction structure at different yaw angles will be discussed in this study.

References

1.
Ahmed
,
S. R.
,
Ramm
,
G.
, and
Faltin
,
G.
,
1984
, “
Some Salient Features of the Time-Averaged Ground Vehicle Wake
,”
SAE Trans.
,
93
, pp.
473
503
.http://courses.me.metu.edu.tr/courses/me485/files/Ahmed1984.pdf
2.
Minguez
,
M.
,
Pasquetti
,
R.
, and
Serre
,
E.
,
2008
, “
High-Order Large-Eddy Simulation of Flow Over the Ahmed Body Car Model
,”
Phys. Fluids
,
20
, p.
095101
.10.1063/1.2952595
3.
Gilliéron
,
P.
,
Leroy
,
A.
,
Aubrun
,
S.
, and
Audier
,
P.
,
2010
, “
Influence of the Slant Angle of 3D Bluff Bodies on Longitudinal Vortex Formation
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051104
.10.1115/1.4001450
4.
Thacker
,
A.
,
Aubrun
,
S.
,
Leroy
,
A.
, and
Devinant
,
P.
,
2012
, “
Effects of Suppressing the 3D Separation on the Rear Slant on the Flow Structures Around an Ahmed Body
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
237
243
.10.1016/j.jweia.2012.04.022
5.
Choi
,
H.
,
Lee
,
J.
, and
Park
,
H.
,
2014
, “
Aerodynamics of Heavy Vehicles
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
441
468
.10.1146/annurev-fluid-011212-140616
6.
Metka
,
M.
, and
Gregory
,
J. W.
,
2015
, “
Drag Reduction on the 25-deg Ahmed Model Using Fluidic Oscillators
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051108
.10.1115/1.4029535
7.
Bayraktar
,
I.
,
Landman
,
D.
, and
Baysal
,
O.
,
2001
, “
Experimental and Computational Investigation of Ahmed Body for Ground Vehicle Aerodynamics
,”
SAE
Paper No. 2001-01-2742.10.4271/2001-01-2742
8.
Bello-Millán
,
F. J.
,
Mäkelä
,
T.
,
Parras
,
L.
,
Del Pino
,
C.
, and
Ferrera
,
C.
,
2016
, “
Experimental Study on Ahmed's Body Drag Coefficient for Different Yaw Angles
,”
J. Wind Eng. Ind. Aerodyn.
,
157
, pp.
140
144
.10.1016/j.jweia.2016.08.005
9.
Keogh
,
J.
,
Barber
,
T.
,
Diasinos
,
S.
, and
Doig
,
G.
,
2016
, “
The Aerodynamic Effects on a Cornering Ahmed Body
,”
J. Wind Eng. Ind. Aerodyn.
,
154
, pp.
34
46
.10.1016/j.jweia.2016.04.002
10.
Meile
,
W.
,
Ladinek
,
T.
,
Brenn
,
G.
,
Reppenhagen
,
A.
, and
Fuchs
,
A.
,
2016
, “
Non-Symmetric Bi-Stable Flow Around the Ahmed Body
,”
Int. J. Heat Fluid Flow
,
57
, pp.
34
47
.10.1016/j.ijheatfluidflow.2015.11.002
11.
Lienhart
,
H.
, and
Becker
,
S.
,
2003
, “
Flow and Turbulence Structure in the Wake of a Simplified Car Model
,”
SAE Trans.
,
112
(
6
), pp.
785
796
.https://www.jstor.org/stable/44745451
12.
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Flow around a Simplified Car, Part 1: Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
907
918
.10.1115/1.1989371
13.
Fourrié
,
G.
,
Keirsbulck
,
L.
, and
Labraga
,
L.
,
2013
, “
Wall Shear Stress Characterization of a 3D Bluff-Body Separated Flow
,”
J. Fluids Struct.
,
42
, pp.
55
69
.10.1016/j.jfluidstructs.2013.05.014
14.
Tunay
,
T.
,
Firat
,
E.
, and
Sahin
,
B.
,
2018
, “
Experimental Investigation of the Flow Around a Simplified Ground Vehicle Under Effects of the Steady Crosswind
,”
Int. J. Heat Fluid Flow
,
71
, pp.
137
152
.10.1016/j.ijheatfluidflow.2018.03.020
15.
Sciacchitano
,
A.
, and
Giaquinta
,
D.
,
2019
, “
Investigation of the Ahmed Body Cross-Wind Flow Topology by Robotic Volumetric PIV
,”
Proceedings of the 13th International Symposium on Particle Image Velocimetry, Universitat der Bundeswehr Munchen
, Munich, Germany, July 22–24.
16.
Nakashima
,
T.
,
Yan
,
C.
,
Moriuchi
,
T.
,
Kohri
,
I.
,
Mutsuda
,
H.
, and
Doi
,
Y.
,
2020
, “
Active Aerodynamics Control of Simplified Vehicle Body in a Crosswind Condition
,”
The Journal of Engineering
,
2020
(
14
), pp.
1005
1011
.10.1049/joe.2020.0062
17.
Liu
,
T.
,
2020
, “
Structures of Skin Friction, Surface Pressure, and Boundary Enstrophy Flux in Attachment-Line Flow
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
014501
.https://doi.org/10.1115/1.4044483
18.
Tran
,
T. H.
, and
Chen
,
L.
,
2020
, “
Optical-Flow Algorithm for Near-Wake Analysis of Axisymmetric Blunt-Based Body at Low-Speed Condition
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111503
.10.1115/1.4048145
19.
Tran
,
T. H.
,
2020
, “
The Effect of Boattail Angles on the Near-Wake Structure of Axisymmetric Afterbody Models at Low-Speed Condition
,”
Int. J. Aerosp. Eng.
,
2020
, p.
7580174
.10.1155/2020/7580174
20.
Liu
,
T.
,
Salazar
,
D. M.
,
Fagehi
,
H.
,
Ghazwani
,
H.
,
Montefort
,
J.
, and
Merati
,
P.
,
2020
, “
Hybrid Optical-Flow-Cross-Correlation Method for Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
054501
.10.1115/1.4045572
21.
Hanfeng
,
W.
,
Yu
,
Z.
,
Chao
,
Z.
, and
Xuhui
,
H.
,
2016
, “
Aerodynamic Drag Reduction of an Ahmed Body Based on Deflectors
,”
J. Wind Eng. Ind. Aerodyn.
,
148
, pp.
34
44
.10.1016/j.jweia.2015.11.004
22.
Liu
,
T.
, and
Shen
,
L.
,
2008
, “
Fluid Flow and Optical Flow
,”
J. Fluid Mech.
,
614
(
11
), pp.
253
291
.10.1017/S0022112008003273
23.
Woodiga
,
S. A.
, and
Liu
,
T.
,
2009
, “
Skin Friction Fields on Delta Wings
,”
Exp. Fluids
,
47
(
6
), pp.
897
911
.10.1007/s00348-009-0686-6
24.
Liu
,
T.
,
Woodiga
,
S.
,
Montefort
,
J.
,
Conn
,
K. J.
, and
Shen
,
L.
,
2009
, “
Global Skin Friction Diagnostics in Separated Flows Using Luminescent Oil
,”
J. Flow Visualization Image Process.
,
16
(
1
), pp.
19
39
.10.1615/JFlowVisImageProc.v16.i1.20
25.
Tran
,
T. H.
,
Ambo
,
T.
,
Lee
,
T.
,
Chen
,
L.
,
Nonomura
,
T.
, and
Asai
,
K.
,
2018
, “
Effect of Boattail Angles on the Flow Pattern on an Axisymmetric Afterbody at Low Speed
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
324
335
.10.1016/j.expthermflusci.2018.07.034
26.
Tran
,
T. H.
,
Ambo
,
T.
,
Lee
,
T.
,
Ozawa
,
K.
,
Chen
,
L.
,
Nonomura
,
T.
, and
Asai
,
K.
,
2019
, “
Effect of Reynolds Number on Flow Behavior and Pressure Drag of Axisymmetric Conical Boattails in Low-Speed Conditions
,”
Exp. Fluids
,
60
(
3
), p.
36
.10.1007/s00348-019-2680-y
27.
Tran
,
T. H.
,
Ambo
,
T.
,
Chen
,
L.
,
Nonomura
,
T.
, and
Asai
,
K.
,
2019
, “
Effect of Boattail Angle on Pressure Distribution and Drag of Axisymmetric Afterbodies Under Low-Speed Conditions
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
62
(
4
), pp.
219
226
.10.2322/tjsass.62.219
28.
Tran
,
T. H.
, and
Chen
,
L.
,
2021
, “
Wall Shear-Stress Extraction by an Optical Flow Algorithm With a Sub-Grid Formulation
,”
Acta Mech. Sin.
,
37
(
1
), pp.
65
79
.10.1007/s10409-020-00994-9
29.
Liu
,
T.
,
Montefort
,
J.
,
Woodiga
,
S.
,
Merati
,
P.
, and
Shen
,
L.
,
2008
, “
Global Luminescent Oil-Film Skin-Friction Meter
,”
AIAA J.
,
46
(
2
), pp.
476
485
.10.2514/1.32219
30.
Lee
,
T.
,
Nonomura
,
T.
,
Asai
,
K.
, and
Naughton
,
J. W.
,
2019
, “
Validation and Uncertainty Analysis of Global Luminescent Oil-Film Skin-Friction Field Measurement
,”
Meas. Sci. Technol.
,
31
(
3
), p.
035204
.https://doi.org/10.1088/1361-6501/ab512a
31.
Kohri
,
I.
,
Yamanashi
,
T.
,
Nasu
,
T.
,
Hashizume
,
Y.
, and
Katoh
,
D.
,
2014
, “
Study on the Transient Behaviour of the Vortex Structure Behind Ahmed Body
,”
SAE Int. J. Passenger Cars - Mech. Syst.
,
7
(
2
), pp.
586
602
.10.4271/2014-01-0597
32.
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Flow Around a Simplified Car, Part 2: Understanding the Flow
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
919
928
.10.1115/1.1989372
33.
Spohn
,
A.
, and
Gilliéron
,
P.
,
2002
, “
Flow Separations Generated by a Simplified Geometry of an Automotive Vehicle
,”
IUTAM Symposium: Unsteady Separated Flows
, Toulouse, France, Apr. 8–14.https://www.researchgate.net/publication/236891940_Flow_separations_generated_by_a_simplified_geometry_of_an_automotive_vehicle
34.
Kim
,
D.
,
Lee
,
H.
,
Yi
,
W.
, and
Choi
,
H.
,
2016
, “
A Bio-Inspired Device for Drag Reduction on a Three-Dimensional Model Vehicle
,”
Bioinspiration Biomimetics
,
11
(
2
), p.
026004
.10.1088/1748-3190/11/2/026004
35.
Vino
,
G.
,
Watkins
,
S.
,
Mousley
,
P.
,
Watmuff
,
J.
, and
Prasad
,
S.
,
2005
, “
Flow Structures in the Near-Wake of the Ahmed Model
,”
J. Fluids Struct.
,
20
(
5
), pp.
673
695
.10.1016/j.jfluidstructs.2005.03.006
36.
Tran
,
T. H.
,
Dinh
,
H. Q.
,
Chu
,
H. Q.
,
Duong
,
V. Q.
,
Pham
,
C.
, and
Do
,
V. M.
,
2021
, “
Effect of Boattail Angle on Near-Wake Flow and Drag of Axisymmetric Models: A Numerical Approach
,”
J. Mech. Sci. Technol.
,
35
(
2
), pp.
563
573
.10.1007/s12206-021-0115-1
37.
Venning
,
J.
,
Lo Jacono
,
D.
,
Burton
,
D.
,
Thompson
,
M.
, and
Sheridan
,
J.
,
2015
, “
The Effect of Aspect Ratio on the Wake of the Ahmed Body
,”
Exp. Fluids
,
56
(
6
), p.
126
.10.1007/s00348-015-1996-5
38.
Zhang
,
B. F.
,
Zhou
,
Y.
, and
To
,
S.
,
2015
, “
Unsteady Flow Structures Around a High-Drag Ahmed Body
,”
J. Fluid Mech.
,
777
, pp.
291
326
.10.1017/jfm.2015.332
39.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1998
, “
Luminescent Oil-Film Skin-Friction Meter Introduction
,”
AIAA J.
,
36
(
8
), pp.
1460
1465
.10.2514/2.538
40.
Thibault
,
R.
, and
Poitras
,
G. J.
,
2017
, “
Uncertainty Evaluation of Friction Velocity Measurements by Oil-Film Interferometry
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051401
.10.1115/1.4035461
41.
Husen
,
N. M.
,
Liu
,
T.
, and
Sullivan
,
J. P.
,
2018
, “
Luminescent Oil Film Flow Tagging Skin Friction Meter Applied to FAITH Hill
,”
AIAA J.
,
56
(
10
), pp.
3875
3886
.10.2514/1.J057114
42.
Zilliac
,
G.
,
1996
, “
Further Developments of the Fringe-Imaging Skin Friction Technique
,” NASA, Washington, DC, NASA Technical Memorandum 110425.
You do not currently have access to this content.