Abstract

Impinging circular free-surface water jets are used in challenging cooling and cleaning tasks. In order to develop simulation models for process optimization, validation data are required, which are currently not available. Therefore, the flow field of these jets is studied for the first time with the novel laser Doppler velocity profile sensor. The mean velocity field and fluctuations are measured within the stagnation and adjacent redirection region for radial coordinates up to three times the nozzle diameter. In the examined parameter range with jet velocities up to 17 m/s and nozzle diameters up to 5.2 mm, i.e., Reynolds numbers up to 69 500, thin films of a few hundred micrometers are formed, which hinder the measurement with common optical measuring systems. Based on the measurement results, a comparatively low-cost volume of fluid simulation model is developed and validated that presumes a relaminarized film flow. The profiles measured and the simulated flow show very good agreement. In the future, the simulation model provides a basis for process optimization and the innovative measurement technology used will prospectively provide further detailed insights into other flows with high velocity gradients.

References

1.
Liu
,
X.
, and
Lienhard
,
J. H.
,
1993
, “
Extremely High Heat Fluxes Beneath Impinging Liquid Jets
,”
ASME J. Heat Transfer
,
115
(
2
), pp.
472
476
.10.1115/1.2910703
2.
Tamime
,
A. Y.
,
2009
,
Cleaning-in-Place: Dairy, Food and Beverage Operations
,
3
rd ed.,
Blackwell Publishing
, Oxford, UK; Ames, IA; Victoria, Australia.
3.
Watson
,
E. J.
,
1964
, “
The Radial Spread of a Liquid Jet Over a Horizontal Plane
,”
J. Fluid Mech.
,
20
(
3
), pp.
481
499
.10.1017/S0022112064001367
4.
Lienhard
,
J.
,
1995
, “
Liquid Jet Impingement
,”
Annu. Rev. Heat Transfer
,
6
(
6
), pp.
199
270
.10.1615/AnnualRevHeatTransfer.v6.60
5.
Baonga
,
J. B.
,
Louahlia-Gualous
,
H.
, and
Imbert
,
M.
,
2006
, “
Experimental Study of the Hydrodynamic and Heat Transfer of Free Liquid Jet Impinging a Flat Circular Heated Disk
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1125
1138
.10.1016/j.applthermaleng.2005.11.001
6.
Schubring
,
D.
,
Ashwood
,
A. C.
,
Shedd
,
T. A.
, and
Hurlburt
,
E. T.
,
2010
, “
Planar Laser-Induced Fluorescence (PLIF) Measurements of Liquid Film Thickness in Annular Flow. Part I: Methods and Data
,”
Int. J. Multiphase Flow
,
36
(
10
), pp.
815
824
.10.1016/j.ijmultiphaseflow.2010.05.007
7.
Hidrovo
,
C. H.
,
Brau
,
R. R.
, and
Hart
,
D. P.
,
2004
, “
Excitation Nonlinearities in Emission Reabsorption Laser-Induced Fluorescence Techniques
,”
Appl. Opt.
,
43
(
4
), pp.
894
913
.10.1364/AO.43.000894
8.
van Hinsberg
,
N.
,
Budakli
,
M.
,
Göhler
,
S.
,
Berberović
,
E.
,
Roisman
,
I.
,
Gambaryan-Roisman
,
T.
,
Tropea
,
C.
, and
Stephan
,
P.
,
2010
, “
Dynamics of the Cavity and the Surface Film for Impingements of Single Drops on Liquid Films of Various Thicknesses
,”
J. Colloid Interface Sci.
,
350
(
1
), pp.
336
343
.10.1016/j.jcis.2010.06.015
9.
Wang
,
D.
,
Zhang
,
H.
,
Yang
,
Y.
, and
Zhang
,
Y.
,
1995
, “
Ultrathin Thickness and Spacing Measurement by Interferometry and Correction Method
,”
SPIE
Paper No. 2542.10.1117/12.218658
10.
de Oliveira
,
F. S.
,
Yanagihara
,
J.
, and
Pacífico
,
A. L.
,
2006
, “
Film Thickness and Wave Velocity Measurement Using Reflected Laser Intensity
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
), pp.
30
36
.10.1590/S1678-58782006000100003
11.
Olsson
,
R. G.
, and
Turkdogan
,
E. T.
,
1966
, “
Radial Spread of a Liquid Stream on a Horizontal Plate
,”
Nature
,
211
(
5051
), pp.
813
816
.10.1038/211813a0
12.
Azuma
,
T.
, and
Hoshino
,
T.
,
1984
, “
The Radial Flow of a Thin Liquid Film: 2nd Report, Liquid Film Thickness
,”
Bull. JSME
,
27
(
234
), pp.
2747
2754
.10.1299/jsme1958.27.2747
13.
Stevens
,
J.
, and
Webb
,
B. W.
,
1991
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
71
78
.10.1115/1.2910554
14.
Stevens
,
J.
, and
Webb
,
B. W.
,
1992
, “
Measurements of the Free Surface Flow Structure Under an Impinging, Free Liquid Jet
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
79
84
.10.1115/1.2911271
15.
Stevens
,
J.
, and
Webb
,
B. W.
,
1993
, “
Measurements of Flow Structure in the Stagnation Zone of Impinging Free-Surface Liquid Jets
,”
Int. J. Heat Mass Transfer
,
36
(
17
), pp.
4283
4286
.10.1016/0017-9310(93)90091-J
16.
Stevens
,
J.
, and
Webb
,
B. W.
,
1993
, “
Measurements of Flow Structure in the Radial Layer of Impinging Free-Surface Liquid Jets
,”
Int. J. Heat Mass Transfer
,
36
(
15
), pp.
3751
3758
.10.1016/0017-9310(93)90055-B
17.
Azuma
,
T.
, and
Hoshino
,
T.
,
1984
, “
The Radial Flow of a Thin Liquid Film: 4th Report, Stability of Liquid Film and Wall Pressure Fluctuation
,”
Bull. JSME
,
27
(
234
), pp.
2763
2770
.10.1299/jsme1958.27.2763
18.
Azuma
,
T.
, and
Hoshino
,
T.
,
1985
, “
The Radial Flow of a Thin Liquid Film: 5th Report, Influence of Wall Roughness on Laminar-Turbulent Transition
,”
Bull. JSME
,
28
(
242
), pp.
1682
1689
.10.1299/jsme1958.28.1682
19.
Rao
,
A.
, and
Arakeri
,
J.
,
2001
, “
Wave Structure in the Radial Film Flow With a Circular Hydraulic Jump
,”
Exp. Fluids
,
31
(
5
), pp.
542
549
.10.1007/s003480100328
20.
Czarske
,
J. R.
,
B Ttner
,
L.
,
Razik
,
T.
, and
M Ller
,
H.
,
2002
, “
Boundary Layer Velocity Measurements by a Laser Doppler Profile Sensor With Micrometre Spatial Resolution
,”
Meas. Sci. Technol.
,
13
(
12
), pp.
1979
1989
.10.1088/0957-0233/13/12/324
21.
Tong
,
A. Y.
,
2003
, “
A Numerical Study on the Hydrodynamics and Heat Transfer of a Circular Liquid Jet Impinging Onto a Substrate
,”
Numer. Heat Transfer: Part A: Appl.
,
44
(
1
), pp.
1
19
.10.1080/713838171
22.
Fujimoto
,
H.
,
Hatta
,
N.
, and
Viskanta
,
R.
,
1999
, “
Numerical Simulation of Convective Heat Transfer to a Radial Free Surface Jet Impinging on a Hot Solid
,”
Heat Mass Transfer
,
35
(
4
), pp.
266
272
.10.1007/s002310050323
23.
Khavari
,
M.
,
Passandideh-Fard
,
M.
, and
Mostaghimi
,
J.
,
2009
, “
The Impingement of a Normal Liquid Jet on a Horizontal Surface: A Numerical Approach
,”
Proceedings of the 20th International Symposium on Transport Phenomena
, Victoria BC, Canada, July 7–10.https://www.researchgate.net/publication/279464287_T HE_IMP INGEMENT_OF_A_NORMAL_LIQUID_JET_ON_A_HORIZONTAL_SURFACE
24.
Lewis
,
S.
,
Anumolu
,
L.
, and
Trujillo
,
M.
,
2013
, “
Numerical Simulations of Droplet Train and Free Surface Jet Impingement
,”
Int. J. Heat Fluid Flow
,
44
, pp.
610
623
.10.1016/j.ijheatfluidflow.2013.09.001
25.
Lin
,
S.-P.
,
2003
,
Breakup of Liquid Sheets and Jets
,
Cambridge University Press
,
Cambridge, UK
.
26.
Hain
,
R.
, and
Kähler
,
C. J.
,
2007
, “
Fundamentals of Multiframe Particle Image Velocimetry (PIV)
,”
Exp. Fluids
,
42
(
4
), pp.
575
587
.10.1007/s00348-007-0266-6
27.
Cierpka
,
C.
,
Rossi
,
M.
,
Segura
,
R.
,
Mastrangelo
,
F.
, and
Kähler
,
C. J.
,
2012
, “
A Comparative Analysis of the Uncertainty of Astigmatism-microPTV, Stereo-microPIV, and microPIV
,”
Exp. Fluids
,
52
(
3
), pp.
605
615
.10.1007/s00348-011-1075-5
28.
Teich
,
M.
,
Mattern
,
M.
,
Sturm
,
J.
,
Büttner
,
L.
, and
Czarske
,
J. W.
,
2016
, “
Spiral Phase Mask Shadow-Imaging for 3d-Measurement of Flow Fields
,”
Opt. Express
,
24
(
24
), p.
27371
.10.1364/OE.24.027371
29.
Durst
,
F.
,
Melling
,
A.
, and
Whitelaw
,
J. H.
,
1976
,
Principles and Practice of Laser-Doppler Anemometry
,
Academic Press
,
London
.
30.
Miles
,
P. C.
,
1996
, “
Geometry of the Fringe Field Formed in the Intersection of Two Gaussian Beams
,”
Appl. Opt.
,
35
(
30
), p.
5887
.10.1364/AO.35.005887
31.
König
,
J.
,
Voigt
,
A.
,
Büttner
,
L.
, and
Czarske
,
J.
,
2010
, “
Precise Micro Flow Rate Measurements by a Laser Doppler Velocity Profile Sensor With Time Division Multiplexing
,”
Meas. Sci. Technol.
,
21
(
7
), p.
074005
.10.1088/0957-0233/21/7/074005
32.
Bürkle
,
F.
,
Moyon
,
F.
,
Feierabend
,
L.
,
Wartmann
,
J.
,
Heinzel
,
A.
,
Czarske
,
J.
, and
Büttner
,
L.
,
2020
, “
Investigation and Equalisation of the Flow Distribution in a Fuel Cell Stack
,”
J. Power Sources
,
448
, p.
227546
.10.1016/j.jpowsour.2019.227546
33.
Sebastian
,
B.
,
Dues
,
M.
,
Barwari
,
B.
,
Steinbock
,
J.
,
Büttner
,
L.
,
Czarske
,
J.
, and
Janoske
,
U.
,
2021
, “
Flow Measurements in the Wake of an Adhering and Oscillating Droplet Using Laser-Doppler Velocity Profile Sensor
,”
Exp. Fluids
,
62
(
3
), pp.
1
16
.10.1007/s00348-021-03148-0
34.
Joppa
,
M.
,
Köhler
,
H.
,
Rüdiger
,
F.
,
Majschak
,
J.
, and
Fröhlich
,
J.
,
2015
, “
Vereinfachte Berechnung der Strömung bei der Strahlreinigung”. Tagungsband zur 8. wiss. Fachtagung ”Wissenschaft Trifft Praxis
,” VVD 2015, Dresden, Germany, Mar. 12–13, pp.
195
208
(in German).
35.
Joppa
,
M.
,
Köhler
,
H.
,
Kricke
,
S.
,
Majschak
,
J.
,
Fröhlich
,
J.
, and
Rüdiger
,
F.
,
2018
, “
Simulation of Jet Cleaning: Diffusion Model for Swellable Soils
,”
Food Bioprod. Process.
,
113, pp.
168
176.
10.1016/j.fbp.2018.11.007
36.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
37.
Weller
,
H. G.
,
2008
, “
A New Approach to Vof-Based Interface Capturing Methods for Incompressible and Compressible Flow
,” Technical report tr/hgw/04, OpenCFD Ltd.
38.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
39.
The OpenFOAM Foundation Ltd
,
2021
, “Openfoam website,” The OpenFOAM Foundation Ltd, London, UK, accessed May 26, 2021, http://www.openfoam.org
40.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
41.
Berberovic
,
E.
,
2010
, “
Investigation of Free-Surface Flow Associated With Drop Impact: Numerical Simulations and Theoretical Modeling
,” Ph.D. Thesis,
TU Darmstadt
.
42.
Rusche
,
H.
,
2003
, “
Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions
,” Ph.D. thesis, Imperial College London (
University of London
),
London, UK
.
43.
Wolf
,
D. H.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1995
, “
Turbulence Dissipation in a Free-Surface Jet of Water and Its Effect on Local Impingement Heat Transfer From a Heated Surface. I: Flow Structure
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
85
94
.10.1115/1.2822327
44.
Jirka
,
G. H.
, and
Lang
,
C.
,
2009
,
Einführung in Die Gerinnehydraulik
, 2nd ed.,
KarlsruheKIT Scientific Publishing
, Karlsruhe, Germany (in German).
45.
Hartmann
,
E.
,
2001
, “
Parametric g n Blending of Curves and Surfaces
,”
Visual Comput.
,
17
(
1
), pp.
1
13
.10.1007/PL00013398
46.
Bhagat
,
R.
, and
Wilson
,
D. I.
,
2016
, “
Flow in the Thin Film Created by a Coherent Turbulent Water Jet Impinging on a Vertical Wall
,”
Chem. Eng. Sci.
,
152
, pp.
606
623
.10.1016/j.ces.2016.06.011
47.
Radner
,
H.
,
Stange
,
J.
,
Büttner
,
L.
, and
Czarske
,
J.
,
2021
, “
Field-Programmable System-on-Chip-Based Control System for Real-Time Distortion Correction in Optical Imaging
,”
IEEE Trans. Ind. Electron.
,
68
(
4
), pp.
3370
3379
.10.1109/TIE.2020.2979557
48.
Kupsch
,
C.
,
Feierabend
,
L.
,
Nauber
,
R.
,
Büttner
,
L.
, and
Czarske
,
J.
,
2021
, “
Ultrasound Super-Resolution Flow Measurement of Suspensions in Narrow Channels
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
68
(
3
), pp.
807
817
.10.1109/TUFFC.2020.3007483
You do not currently have access to this content.