Abstract

This work focuses on an advanced coupling of computational fluid dynamics (CFD) and structural finite element analysis (FEA) on the aeroelastic behavior of a single element inverted composite wing with the novelty of including the ground effect. The front wing of the formula one (F1) car can become flexible under the fluid loading due to elastic characteristics of composite materials, resulting in changing the flow field and eventually altering overall aerodynamics. The purpose of this study is to setup an accurate fluid–structure interaction (FSI) modeling framework and to assess the influence of elastic behavior of the wing in ground effect on the aerodynamic and structural performance. Different turbulence models are studied to capture better the changes of the flow field and variation of ride heights are considered to investigate the influence of ground effect on aerodynamic phenomena. A steady-state two-way coupling method is exploited to run the FSI numerical simulations using ansys, which enables simultaneous calculation by coupling CFD with FEA. The effect of various composite structures on the wing performance is extensively studied concerning structure configuration, ply orientation, and core materials. The numerical results generally represent good agreement with the experimental data, however, discrepancy, especially in the aerodynamic force, is presented. This may be a consequence of a less effective angle of attack due to the wing deflection and deterioration of vortex-induced effect. For the structural analysis, the woven structure gives rise to more stable structural deflection than the unidirectional structure despite the associated weight penalty.

References

1.
Agathangelou
,
B.
, and
G
,
1998
, “
Aerodynamic Considerations of a Formula 1 Racing Car
,”
SAE
Paper No. 980399.10.4271/980399
2.
Castro
,
X.
, and
Rana
,
Z. A.
,
2020
, “
Aerodynamic and Structural Design of a 2022 Formula One Front Wing Assembly
,”
Fluids
,
5
(
4
), p.
237
.10.3390/fluids5040237
3.
Somerfield
,
M.
,
2016
, “
Analysis: Is F1 Set for Another Flexi-Wing War?
,” Motorsport.com
4.
Katz
,
J.
,
1985
, “
Calculation of the Aerodynamic Forces on Automotive Lifting Surfaces
,”
ASME J. Fluids Eng.
,
107
(
4
), pp.
438
443
.10.1115/1.3242507
5.
Katz
,
J.
,
1994
, “
Considerations Pertinent to Race-Car Wing Design
,”
Loughborough University Conference on Vehicle Aerodynamics
, Nov., UK, pp.
23.1
23.7
.
6.
Katz
,
J.
,
1995
, “
High-Lift Wing Design for Race-Car Applications
,”
SAE
Paper No. 951976.10.4271/951976
7.
Knowles
,
K.
,
Donahue
,
D.
, and
Finnis
,
M.
,
1994
, “
A Study of Wings in Ground Effect
,”
Loughborough University Conference on Vehicle Aerodynamics
, Nov., UK, pp.
22.1
22.13
.
8.
Ranzenbach
,
R.
, and
Barlow
,
J. B.
,
1994
, “
Two-Dimensional Airfoil in Ground Effect, an Experimental and Computational Study
,”
SAE
Paper No. 94-2509.10.4271/94-2509
9.
Ranzenbach
,
R.
, and
Barlow
,
J. B.
,
1995
, “
Cambered Airfoil in Ground Effect- Wind Tunnel and Road Conditions
,”
13th Applied Aerodynamics Conference
, San Diego, CA, June, pp.
1208
1215
.
10.
Ranzenbach
,
R.
, and
Barlow
,
J.
,
1996
, “
Cambered Airfoil in Ground Effect-an Experimental and Computational Study
,”
SAE
Paper No. 960909.10.4271/960909
11.
Ranzenbach
,
R.
,
Barlow
,
J. B.
, and
Diaz
,
R. H.
,
1997
, “
Multi-Element Airfoil in Ground Effect- an Experimental and Computational Study
,”
AIAA
Paper No. 97-2238.10.2514/6.97-2238
12.
Zhang
,
X.
, and
Zerihan
,
J.
,
2000
, “
Aerodynamics of a Single Element Wing in Ground Effect
,”
AIAA
Paper No. 2000-650.10.2514/6.2000-650
13.
Zhang
,
X.
, and
Zerihan
,
J.
,
2000
, “
Turbulent Wake Behind a Single Element Wing in Ground Effect
,”
Proceedings of Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, July.
14.
Zhang
,
X.
, and
Zerihan
,
J.
,
2003
, “
Off-Surface Aerodynamic Measurements of a Wing in Ground Effect
,”
J. Aircr.
,
40
(
4
), pp.
716
725
.10.2514/2.3150
15.
Zerihan
,
J.
, and
Zhang
,
X.
,
2001
, “
A Single Element Wing in Ground Effect; Comparisons of Experiments and Computation
,”
39th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan.
16.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.1992-439
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
18.
Lawson
,
N. J.
,
Knowles
,
K.
,
Hart
,
R. J. E.
,
Wray
,
J. N.
, and
Eyles
,
J. M.
,
2002
, “
An Experimental Investigation Using PIV of the Underflow of a GA(W)-1 Aerofoil Section in Ground Effect
,”
Proceedings of the Fourth MIRA International Vehicle Aerodynamics Conference
, Octorber, UK, pp.
1
14
.
19.
Mahon
,
S.
, and
Zhang
,
X.
,
2005
, “
Computational Analysis of Pressure and Wake Characteristics of an Aerofoil in Ground Effect
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
290
298
.10.1115/1.1891152
20.
Arrondeau
,
B.
, and
Rana
,
Z.
,
2020
, “
Computational Aerodynamics Analysis of Non-Symmetric Multi-ElementWing in Ground Effect With Humpback Whale Flipper Tubercles
,”
Fluids
,
5
(
4
), p.
247
.10.3390/fluids5040247
21.
Yurkovich
,
R.
,
2003
, “
Status of Unsteady Aerodynamic Prediction for Flutter of High Performance Aircraft
,”
J. Aircr.
,
40
(
5
), pp.
832
842
.10.2514/2.6874
22.
Sangeetha
,
C.
,
2015
, “
Fluid Structure Interaction on AGARD 445.6 Wing at Transonic Speeds
,”
J. Aircr.
,
2
(
4
), pp.
28
34
. http://www.ijetajournal.org/volume-2/issue-4/IJETA-V2I4P4.pdf
23.
Chen
,
X.
,
Zha
,
G.-C.
, and
Yang
,
M.-T.
,
2007
, “
Numerical Simulation of 3D Wing Flutter With Fully Coupled Fluid Structural Interaction
,”
J. Aircr.
,
36
(
5
), pp.
856
867
.10.1016/j.compfluid.2006.08.005
24.
Krawczyk
,
P.
,
Beyene
,
A.
, and
MacPhee
,
D.
,
2013
, “
Fluid Structure Interaction of a Morphed Wind Turbine Blade
,”
Int. J. Energy Res.
,
37
(
14
), pp.
1784
1793
.10.1002/er.2991
25.
Bagheri
,
E.
, and
Nejat
,
A.
,
2015
, “
Numerical Aeroelastic Analysis of Wind Turbine NREL Phase VI Rotor
,”
Energy Equip. Syst.
,
3
, pp.
45
55
, http://www.energyequipsys.com/article_13910_db9ba35dccdaf6a0a6ba85dff373c868.pdf
26.
Wang
,
L.
,
Quant
,
R.
, and
Kolios
,
A.
,
2016
, “
Fluid Structure Interaction Modelling of Horizontal-Axis Wind Turbine Blades Based on CFD and FEA
,”
J. Wind Eng. Ind. Aerodyn.
,
158
, pp.
11
25
.10.1016/j.jweia.2016.09.006
27.
Gaylard
,
A.
,
Beckett
,
M.
,
Gargoloff
,
J.
, and
Duncan
,
B.
,
2010
, “
CFD-Based Modelling of Flow Conditions Capable of Inducing Hood Flutter
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
3
(
1
), pp.
675
694
.10.4271/2010-01-1011
28.
Ratzel
,
M.
, and
Dias
,
W.
,
2014
, “
Fluid - Structure Interaction Analysis and Optimization of an Automotive Component
,”
SAE
Paper No. 2014-01-2446.10.4271/2014-01-2446
29.
Patil
,
S.
,
Lietz
,
R.
,
Woodiga
,
S.
,
Ahn
,
H.
,
Larson
,
L.
,
Gin
,
R.
,
Elmore
,
M.
, and
Simpson
,
A.
,
2015
, “
Fluid Structure Interaction Simulations Applied to Automotive Aerodynamics
,”
SAE
Paper No. 2015-01-1544.10.4271/2015-01-1544
30.
Andreassi
,
L.
,
Mulone
,
V.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2004
, “
A CFD-FEM Approach to Study Wing Aerodynamics Under Deformation
,”
SAE
Paper No. 2004-01-0444.10.4271/2004-01-0444
31.
Nazari
,
A.
,
Chen
,
L.
,
Battaglia
,
F.
,
Ferris
,
J. B.
,
Flintsch
,
G.
, and
Taheri
,
S.
,
2020
, “
Prediction of Hydroplaning Potential Using Fully Coupled Finite Element-Computational Fluid Dynamics Tire Models
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101202
.10.1115/1.4047393
32.
Zeng
,
Y.
,
Yao
,
Z.
,
Gao
,
J.
,
Hong
,
Y.
,
Wang
,
F.
, and
Zhang
,
F.
,
2019
, “
Numerical Investigation of Added Mass and Hydrodynamic Damping on a Blunt Trailing Edge Hydrofoil
,”
ASME. J. Fluids Eng.
,
141
(
8
), p.
081108
.10.1115/1.4042759
33.
Zeng
,
Y.
,
Yao
,
Z.
,
Zhang
,
S.
,
Wang
,
F.
, and
Xiao
,
R.
,
2021
, “
Influence of Tip Clearance on the Hydrodynamic Damping Characteristics of a Hydrofoil
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061202
.10.1115/1.4049675
34.
Smith
,
S. M.
,
Venning
,
J. A.
,
Giosio
,
D. R.
,
Brandner
,
P. A.
,
Pearce
,
B. W.
, and
Young
,
Y. L.
,
2019
, “
Cloud Cavitation Behavior on a Hydrofoil Due to Fluid-Structure Interaction
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041105
.10.1115/1.4042067
35.
Dinçer
,
A. E.
,
Demir
,
A.
,
Bozkuş
,
Z.
, and
Tijsseling
,
A. S.
,
2019
, “
Fully Coupled Smoothed Particle Hydrodynamics-Finite Element Method Approach for Fluid–Structure Interaction Problems With Large Deflections
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081402
.10.1115/1.4043058
36.
H. J.
Bungartz
, and
M.
Schäfer
, Eds.,
2006
,
Fluid-Structure Interaction: Modelling, Simulation, Optimization
,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
37.
Sigrist
,
J. F.
,
2015
,
Fluid-Structure Interaction: An Introduction to Finite Element Coupling
,
Wiley
, Hoboken, NJ.
38.
Ryzhakov
,
P. B.
,
Rossi
,
R.
,
Idelsohn
,
S. R.
, and
Onate
,
E.
,
2010
, “
A Monolithic Lagrangian Approach for Fluid-Structure Interaction Problems
,”
Comput. Mech.
,
46
(
6
), pp.
883
899
.10.1007/s00466-010-0522-0
39.
Michler
,
C.
,
Hulshoff
,
S. J.
,
van Brummelen
,
E. H.
, and
de Borst
,
R.
,
2004
, “
A Monolithic Approach to Fluid-Structure Interaction
,”
Comput. Fluids
,
33
(
5–6
), pp.
839
848
.10.1016/j.compfluid.2003.06.006
40.
Piperno
,
S.
,
Farhat
,
C.
, and
Larrouturou
,
B.
,
1995
, “
Partitioned Procedures for the Transient Solution of Coupled Aeroelastic Problems, Part I: Model Problem, Theory and Two-Dimensional Application
,”
Comput. Methods Appl. Mech. Eng.
,
124
(
1–2
), pp.
79
112
.10.1016/0045-7825(95)92707-9
41.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
42.
Wilcox
,
D. C.
,
1988
, “
Multiscale Models for Turbulent Flows
,”
AIAA J.
,
26
(
11
), pp.
1311
1320
.10.2514/3.10042
43.
Yakhot
,
A.
, and
Orszag
,
S.
,
1986
, “
Renormalisation Group Analysis of Turbulence: I Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
1
51
.10.1007/BF01061452
44.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k−ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
45.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
1986
, “
Editorial Policy Statement on Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), p.
2
.10.1115/1.3242537
46.
Roache
,
P. J.
,
1994
, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.,
116(
3
), pp. 405–413.10.1115/1.2910291
47.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
, Socorro, NM.
48.
Zerihan
,
J.
,
2001
,
An Investigation on the Aerodynamics of a Symmetrical Airfoil in Ground Effect
,
University of Southampton
, Southampton, UK.
49.
FIA
,
2018
, “
2018 Formula One Technical Regulation
,” accessed Dec. 9, 2021, https://www.fia.com/1-formula-one-technical-regulations-2018-0
50.
ANSYS
,
2018
, “
Ansys Composite Library
,” accessed Dec. 9, 2021, https://www.ansys.com/products/materials/materials-data-library
You do not currently have access to this content.