Abstract

A computational fluid dynamics study is carried out to model the effects of distributed roughness at the airfoil leading-edge using the equivalent sand grain approach and Reynolds-averaged Navier–Stokes equations. The turbulence model kωshear stress transport (SST) is selected to emulate a fully turbulent flow. Three k and ω boundary conditions are studied to model roughness effects. One refers to Wilcox's boundary condition and the other two refer to Aupoix's boundary conditions. Besides, Hellsten's correction is used to ensure Wilcox's boundary condition compatibility with the shear stress transport limiter. After validating the implementation of these boundary conditions, they are applied to three different airfoils. One of them is a thick airfoil with industrial relevance. For this airfoil, Wilcox's boundary condition significantly underestimates the roughness impact on aerodynamic coefficients. The pressure gradient simplification in Wilcox's boundary condition formulation is the driving factor behind this effect. The pressure gradient effect on Aupoix's boundary condition is minimal.

References

1.
Anderson
,
J.
,
2010
,
Fundamentals of Aerodynamics
,
The McGraw-Hill Companies, Inc
.,
New York
, pp.
1025
1026
.
2.
Tabib
,
M.
,
Rasheed
,
A.
,
Siddiqui
,
M. S.
, and
Kvamsdal
,
T.
,
2017
, “
A Full-Scale 3D Vs 2.5D Vs 2D Analysis of Flow Pattern and Forces for an Industrial-Scale 5 MW NREL Reference Wind-Turbine
,”
Energy Procedia
,
137
, pp.
477
486
.10.1016/j.egypro.2017.10.372
3.
Wilcox
,
D. C.
,
2006
,
Turbulence Modelling for CFD
, 3rd ed.,
D C W Industries
,
Canada, CA
, pp.
182
185
.
4.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
One-Equation Turbulence Model for Aerodynamic Flows
,” Recherche Aerospatiale,
AIAA Meeting Paper 30th Aerospace Sciences Meeting and Exhibit
, Reno, NV.10.2514/6.1992-439
5.
Menter
,
F.
,
1993
, “
Zonal Two Equation k–w Models Turbulence for Aerodynamic Flows
,” AIAA Meeting Paper,
23rd Fluid Dynamics, Plasmadynamics and Lasers Conference
, Orlando, FL.10.2514/6.1993-2906
6.
Langtry
,
R. B.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
7.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
J. Fluids Eng., Trans. ASME
,
130
(
12), p. 121401
.10.1115/1.2979230
8.
Bak
,
C.
,
Forstin
g,
A. M.
, and
Sorensen
,
N. N.
,
2020
, “
The Influence of Leading Edge Roughness, Rotor Control and Wind Climate on the Loss in Energy Production
,”
J. Phys. Conf. Ser.
,
1618
, p.
052050
10.1088/1742-6596/1618/5/052050
9.
Ehrmann
,
R. S.
, and
Submitted
,
2014
, “
Effect of Surface Roughness on Wind Turbine Performance
,” Ph.D. thesis, Texas A&M University, College Station, TX.
10.
Gutiérrez
,
R.
,
Llórente
,
E.
,
Echeverría
,
F.
, and
Ragni
,
D.
,
2020
, “
Wind Tunnel Tests for Vortex Generators Mitigating Leading-Edge Roughness on a 30% Thick Airfoil
,”
J. Phys.: Conf. Ser.
,
1618
, p.
052058
.10.1088/1742-6596/1618/5/052058
11.
Nikuradse
,
J.
,
1936
, “
Laws of Flow in Rough Pipes
,” National Advisory Committee for Aeronautics, Washington, Technical Report No. 4.
12.
Kerho
,
M. F.
, and
Bergg
,
M. B.
,
1995
, “
Effect of Large Distributed Leading-Edge Roughness on Boundary Layer Development and Transition
,”
13th Applied Aerodynamics Conference
, San Diego, CA, pp.
322
334
.10.2514/6.1995-1803
13.
Langel
,
C. M.
,
Chow
,
R.
,
Dam
,
C. P. V.
, and
Maniaci
,
D. C.
,
2017
, “
RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance
,”
Technical Report
, Sandia Laboratories, Albuquerque, NM, pp.
1
170.
10.2172/1404827
14.
Drela
,
M.
,
1989
, “
Xfoil: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics. Proceedings of the Conference, Notre Dame
, IN.
15.
Van Rooij
,
R.
,
1996
, “
Modification of the Boundary Layer Calculation in Rfoil for Improved Airfoil Stall Prediction
,” The Netherlands, DUWIND Report IW-96087R.
16.
van Ingen
,
J.
, The eN Method for Transition Prediction. Historical Review of Work at TU Delft, AIAA Meeting Paper,
38th AIAA Fluid Dynamics Conference and Exhibit
, Seattle, Washington, DC, June 23–26, pp.
1
49
.10.2514/6.2008-3830
17.
Kruse
,
E.
,
Sørensen
,
N.
,
Bak
,
C.
, and
Nielsen
,
M.
,
2020
, “
CFD Simulations and Evaluation of Applicability of a Wall Roughness Model Applied on a NACA 633-–418 Airfoil
,”
Wind Energy
,
23
(
11
), pp.
2056
2067
.10.1002/we.2545
18.
Aupoix
,
B.
,
2007
, “
A General Strategy to Extend Turbulence Models to Rough Surfaces: Application to Smith's k–L Model
,”
J. Fluids Eng., Trans. ASME
,
129
(
10
), pp.
1245
1254
.10.1115/1.2776960
19.
Ribeiro
,
A.
,
Casalino
,
D.
,
Fares
,
E.
, and
Choudhari
,
M.
,
2016
, “
Direct Numerical Simulation of an Airfoil With Sand Grain Roughness on the Leading Edge
,” NASA Technical Memorandum 219363 (October 2016).
20.
Aupoix
,
B.
,
2015
, “
Roughness Corrections for the k-ω Shear Stress Transport Model: Status and Proposals
,”
ASME J. Fluids Eng.
,
137
(
2
), p. 02120210.1115/1.4028122.
21.
Mendez
,
B.
,
Muñoz
,
A.
, and
Munduate
,
X.
,
2015
, “
Study of Distributed Roughness Effect Over Wind Turbine Airfoils Performance Using CFD
,”
33rd Wind Energy Symposium
, Kissimmee, FL, Jan. 5–9, pp.
1
20
.10.2514/6.2015-0994
22.
Bangga
,
G.
,
Kusumadewi
,
T.
,
Hutomo
,
G.
,
Sabila
,
A.
,
Syawitri
,
T.
,
Setiadi
,
H.
,
Faisal
,
M.
,
Wiranegara
,
R.
,
Hendranata
,
Y.
,
Lastomo
,
D.
,
Putra
,
L.
, and
Kristiadi
,
S.
,
2018
, “
Improving a Two-Equation Eddy-Viscosity Turbulence Model to Predict the Aerodynamic Performance of Thick Wind Turbine Airfoils
,”
J. Phys. Conf. Ser.
,
974
, p. 012019.10.1088/1742-6596/974/1/012019
23.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
OpenFOAM: A C ++ Library for Complex Physics Simulations
,” International Workshop on Coupled Methods Numerical Dynamics, Dubrovnik, Croatia.
24.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
, “
Boundary-Layer Theory
,” 8th Revised and Enlarged Edition, Springer-Verlag Berlin Heidelberg, Germany, pp.
529
534
.
25.
Colebrook
,
C. F.
,
White
,
C. M.
, and
Taylor
,
G. I.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London. Ser. A – Math. Phys. Sci.
,
161
(
906
), pp.
367
381.
10.1098/rspa.1937.0150
26.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng
.,
21
, pp.
113
156
.
27.
Grigson
,
C.
,
1992
, “
Drag Losses of New Ships Caused by Hull Finish
,”
J. Ship Res.
,
36
(
02
), pp.
182
196
.10.5957/jsr.1992.36.2.182
28.
Saffman
,
P. G.
, and
Whitham
,
G. B.
,
1970
, “
A Model for Inhomogeneous Turbulent Flow
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
317
(
1530
), pp.
417
433.
10.1098/rspa.1970.0125
29.
Hellsten
,
A.
, and
Laine
,
S.
,
1997
, “
Extension of the k–ω–SST Turbulence Model for Flows Over Rough Surfaces
,”
22nd Atmospheric Flight Mechanics Conference
, New Orleans, LA, pp.
252
260
.10.2514/6.1997-3577
30.
Ferrer
,
E.
, and
Munduate
,
X.
,
2009
, “
CFD Predictions of Transition and Distributed Roughness Over a Wind Turbine Airfoil
,”
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, Orlando, FL, pp.
1
16
.
31.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.10.2514/1.29373
32.
Sorensen
,
N. N.
,
Mendez
,
B.
,
Munoz
,
A.
,
Sieros
,
G.
,
Jost
,
E.
,
Lutz
,
T.
,
Papadakis
,
G.
,
Voutsinas
,
S.
,
Barakos
,
G. N.
,
Colonia
,
S.
,
Baldacchino
,
D.
,
Baptista
,
C.
, and
Ferreira
,
C.
,
2016
, “
CFD Code Comparison for 2D Airfoil Flows
,”
J. Phys. Conf. Ser.
,
753
, p.
0820198
.10.1088/1742-6596/753/8/082019
33.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
34.
Ramsay
,
R. F.
,
Hoffman
,
M. J.
, and
Gregorek
,
G. M.
,
1995
, “
Effects of Grit Roughness and Pitch Oscillations on the S809 Airfoil
,” National Renewable Energy Lab. (NREL), Golden, CO, Technical Report No. NREL/TP-442-7817.
35.
Zhong
,
W.
,
Tang
,
H.
,
Wang
,
T.
, and
Zhu
,
C.
,
2018
, “
Accurate RANS Simulation Ofwind Turbine Stall by Turbulence Coefficient Calibration
,”
Appl. Sci.
,
8
(
9
), p.
1444
.10.3390/app8091444
36.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
, “
Theory of Wing Sections: Including a Summary of Airfoil Data
,” Dover Publications, Mineola, NY.
37.
Van Rooij
,
R. P. J. O. M.
, and
Timmer
,
W. A.
,
2003
, “
Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils
,”
J. Sol. Energy Eng., Trans. ASME
,
125
(
4
), pp.
468
478
.10.1115/1.1624614
You do not currently have access to this content.