Abstract

Water jet peening can effectively improve the fatigue strength of metal materials, and the outlet shape of nozzle greatly affects the effect of water jet peening. In this paper, the effects of nozzle outlet shape on water jet velocity and impact pressure are studied by numerical simulation, and the jet velocity and dynamic pressure for different standoff distances are also discussed. The results show that the water jets of square, circular, and triangular nozzles are highly concentrated, and the water jet of elliptical nozzles is the most divergent. The axial velocity attenuation of the square nozzle along the axis is slower than that of the other three nozzles. The water axial velocity of the elliptical nozzle attenuates fastest, and the length of the core segment of the water jet is the smallest. Within a certain axial distance, the dynamic pressure area in the central area of the elliptical water jet is obviously larger than that of the other three nozzles, and the effective treatment range is large, which is more suitable for the welding surface strengthening operation.

References

1.
Muruganandhan
,
R.
,
Mugilvalavan
,
M.
,
Thirumavalavan
,
K.
, and
Yuvaraj
,
N.
,
2018
, “
Investigation of Water Jet Peening Process Parameters on AL6061-T6
,”
Surf. Eng.
,
34
(
4
), pp.
330
340
.10.1080/02670844.2017.1394564
2.
Eriksson
,
R.
,
Moverare
,
J.
, and
Chen
,
Z.
,
2019
, “
A Low Cycle Fatigue Life Model for a Shot Peened Gas Turbine Disc Alloy
,”
Int. J. Fatigue
,
124
, pp.
34
41
.10.1016/j.ijfatigue.2019.02.034
3.
Vielma
,
A. T.
,
Llaneza
,
V.
, and
Belzunce
,
F. J.
,
2014
, “
Effect of Coverage and Double Peening Treatments on the Fatigue Life of a Quenched and Tempered Structural Steel
,”
Surf. Coat. Technol.
,
249
, pp.
75
83
.10.1016/j.surfcoat.2014.03.051
4.
Chillman
,
A.
,
Ramulu
,
M.
, and
Hashish
,
M.
,
2007
, “
Waterjet Peening and Surface Preparation at 600 MPa: A Preliminary Experimental Study
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
485
490
.10.1115/1.2436580
5.
Habibzadeh
,
S.
,
Li
,
L.
,
Shum-Tim
,
D.
,
Davis
,
E. C.
, and
Omanovic
,
S.
,
2014
, “
Electrochemical Polishing as a 316 L Stainless Steel Surface Treatment Method: Towards the Improvement of Biocompatibility
,”
Corros. Sci.
,
87
, pp.
89
100
.10.1016/j.corsci.2014.06.010
6.
Azhari
,
A.
,
Schindler
,
C.
,
Kerscher
,
E.
, and
Grad
,
P.
,
2012
, “
Improving Surface Hardness of Austenitic Stainless Steel Using Waterjet Peening Process
,”
Int. J. Adv. Manuf. Technol.
,
63
(
9–12
), pp.
1035
1046
.10.1007/s00170-012-3962-1
7.
Arola
,
D.
,
Alade
,
A. E.
, and
Weber
,
W.
,
2006
, “
Improving Fatigue Strength of Metals Using Abrasive Waterjet Peening
,”
Mach. Sci. Technol.
,
10
(
2
), pp.
197
218
.10.1080/10910340600710105
8.
Ramulu
,
M.
,
Kunaporn
,
S.
,
Jenkins
,
M.
,
Hashish
,
M.
, and
Hopkins
,
J.
,
2002
, “
Fatigue Performance of High-Pressure Waterjet-Peened Aluminum Alloy
,”
ASME J. Pressure Vessel Technol.
,
124
(
1
), pp.
118
123
.10.1115/1.1398553
9.
He
,
Z.
,
Zhao
,
S.
,
Li
,
C.
,
Li
,
D.
,
Zhang
,
Y.
,
Fu
,
T.
, and
Yu
,
H.
,
2020
, “
Numerical Investigation of Surface Topography and Residual Stress After Abrasive Water Jet Sequential Peening (AWJSP)
,”
Mach. Sci. Technol.
,
24
(
4
), pp.
592
620
.10.1080/10910344.2020.1752233
10.
Azhari
,
A.
,
Schindler
,
C.
,
Godard
,
C.
,
Gibmeier
,
J.
, and
Kerscher
,
E.
,
2016
, “
Effect of Multiple Passes Treatment in Waterjet Peening on Fatigue Performance
,”
Appl. Surf. Sci.
,
388
, pp.
468
474
.10.1016/j.apsusc.2015.11.195
11.
Huang
,
F.
,
Li
,
S.
,
Zhao
,
Y.
, and
Liu
,
Y.
,
2018
, “
A Numerical Study on the Transient Impulsive Pressure of a Water Jet Impacting Nonplanar Solid Surfaces
,”
J. Mech. Sci. Technol.
,
32
(
9
), pp.
4209
4221
.10.1007/s12206-018-0819-z
12.
Manivannan
,
P.
, and
Sridhar
,
B. T. N.
,
2013
, “
Characteristic Study of Non-Circular Incompressible Free Jet
,”
Therm. Sci.
,
17
(
3
), pp.
787
800
.10.2298/TSCI110208116M
13.
Soyama
,
H.
,
2011
, “
Enhancing the Aggressive Intensity of a Cavitating Jet by Means of the Nozzle Outlet Geometry
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101301
.10.1115/1.4004905
14.
Baisheng
,
N. I. E.
,
Hui
,
W. A. N. G.
,
Lei
,
L. I.
,
Jufeng
,
Z.
,
Hua
,
Y. A. N. G.
,
Zhen
,
L. I. U.
,
Longkang
,
W. A. N. G.
, and
Hailong
,
L.
,
2011
, “
Numerical Investigation of the Flow Field Inside and Outside High-Pressure Abrasive Waterjet Nozzle
,”
Procedia Eng.
,
26
, pp.
48
55
.10.1016/j.proeng.2011.11.2138
15.
Wang
,
F.
, and
Fang
,
T.
,
2015
, “
Liquid Jet Breakup for Non-Circular Orifices Under Low Pressures
,”
Int. J. Multiphase Flow
,
72
, pp.
248
262
.10.1016/j.ijmultiphaseflow.2015.02.015
16.
Rao
,
A. N.
,
Kushari
,
A.
, and
Jaiswal
,
G. K.
,
2018
, “
Effect of Nozzle Geometry on Flowfield for High Subsonic Jets
,”
J. Propul. Power
,
34
(
6
), pp.
1596
1608
.10.2514/1.B37028
17.
Aravindh Kumar
,
S. M.
, and
Rathakrishnan
,
E.
,
2017
, “
Nozzle Aspect Ratio Effect on Supersonic Elliptic Jet Mixing
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101103
.10.1115/1.4036823
18.
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
,
2017
, “
Statistical Properties of Round, Square, and Elliptic Jets at Low and Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101206
.10.1115/1.4036824
19.
Aleyasin
,
S. S.
,
Fathi
,
N.
,
Tachie
,
M. F.
,
Vorobieff
,
P.
, and
Koupriyanov
,
M.
,
2018
, “
On the Development of Incompressible Round and Equilateral Triangular Jets Due to Reynolds Number Variation
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111202
.10.1115/1.4040031
20.
Ghahremanian
,
S.
,
Svensson
,
K.
,
Tummers
,
M. J.
, and
Moshfegh
,
B.
,
2014
, “
Near-Field Mixing of Jets Issuing From an Array of Round Nozzles
,”
Int. J. Heat Fluid Flow
,
47
, pp.
84
100
.10.1016/j.ijheatfluidflow.2014.01.007
21.
Prisco
,
U.
, and
D'Onofrio
,
M. C.
,
2008
, “
Three-Dimensional CFD Simulation of Two-Phase Flow Inside the Abrasive Water Jet Cutting Head
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
9
(
5
), pp.
300
319
.10.1080/15502280802225598
22.
Argyropoulos
,
C. D.
, and
Markatos
,
N. C.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Modell.
,
39
(
2
), pp.
693
732
.10.1016/j.apm.2014.07.001
23.
Teaters
,
L. C.
, and
Battaglia
,
F.
,
2014
, “
On the Computational Modeling of Unfluidized and Fluidized Bed Dynamics
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
104501
.10.1115/1.4027437
24.
Luo
,
Q.
,
He
,
K.
,
Mao
,
H.
,
Li
,
J. H.
,
Li
,
Q. C.
, and
Du
,
R. X.
,
2012
, “
Numerical Simulation of High Velocity Waterjet Characteristics and Impact Pressure
,”
Applied Mechanics and Materials
,
109, pp.
551
556
.10.4028/www.scientific.net/AMM.109.551
25.
Utyuzhnikov
,
S. V.
,
2012
, “
Interface Boundary Conditions in Near-Wall Turbulence Modeling
,”
Comput. Fluids
,
68
, pp.
186
191
.10.1016/j.compfluid.2012.07.023
26.
Cloete
,
S.
,
Johansen
,
S. T.
, and
Amini
,
S.
,
2015
, “
Grid Independence Behaviour of Fluidized Bed Reactor Simulations Using the Two Fluid Model: Effect of Particle Size
,”
Powder Technol.
,
269
, pp.
153
165
.10.1016/j.powtec.2014.08.055
27.
Liu
,
Y.
,
Zhang
,
J.
,
Wei
,
J.
, and
Liu
,
X.
,
2020
, “
Optimum Structure of a Laval Nozzle for an Abrasive Air Jet Based on Nozzle Pressure Ratio
,”
Powder Technol.
,
364
, pp.
343
362
.10.1016/j.powtec.2020.01.086
28.
Sinha
,
A.
,
Balasubramanian
,
S.
, and
Gopalakrishanan
,
S.
,
2015
, “
Internal and External Characteristics of a Superheated Jet
,”
Comput. Methods Multiphase Flow VIII
,
89
, pp.
225
236
.10.2495/MPF150201
29.
Ball
,
C. G.
,
Fellouah
,
H.
, and
Pollard
,
A.
,
2012
, “
The Flow Field in Turbulent Round Free Jets
,”
Prog. Aerosp. Sci.
,
50
, pp.
1
26
.10.1016/j.paerosci.2011.10.002
30.
Gori
,
F.
,
Petracci
,
I.
, and
Angelino
,
M.
,
2014
, “
Influence of the Reynolds Number on the Instant Flow Evolution of a Turbulent Rectangular Free Jet of Air
,”
Int. J. Heat Fluid Flow
,
50
, pp.
386
401
.10.1016/j.ijheatfluidflow.2014.10.001
31.
Smith
,
B. L.
, and
Swift
,
G. W.
,
2003
, “
A Comparison Between Synthetic Jets and Continuous Jets
,”
Exp. Fluids
,
34
(
4
), pp.
467
472
.10.1007/s00348-002-0577-6
32.
Schuler
,
M. J.
,
Rothenfluh
,
T.
, and
Von Rohr
,
P. R.
,
2013
, “
Numerical Analysis of Penetration Lengths in Submerged Supercritical Water Jets
,”
J. Supercrit. Fluids
,
82
, pp.
213
220
.10.1016/j.supflu.2013.07.017
33.
Wen
,
J.
,
Chen
,
C.
,
Qi
,
Z.
,
Campos
,
U.
, and
Pei
,
X.
,
2019
, “
Bionic Optimum Design of Straight Cone Nozzle and the Effectiveness Evaluation of Reducing Fluid Resistance
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
9
), pp.
1
21
.10.1007/s40430-019-1863-z
You do not currently have access to this content.