Abstract

The objective of this paper is to reveal the influence of different surface geometric conditions on the dynamic behavior characteristics of a laser-induced bubble collapse. A high-speed camera system was used to record the oscillation process of the laser-induced bubble on plane solid walls with different roughness and a wall containing reentrant cavities full of water or gas. The focus is on the quantitative analysis of the morphological characteristics of the cavitation bubble near the solid wall under different surface forms during the first two oscillation periods. The results show that the dimensionless ratio γ, defined as the distance from the center of the bubble to the wall divided by the maximum radius of the bubble, has a great influence on the change of the cavitation shape in the direction of the vertical wall. Different surface geometries without gas in our cases have no significant effect on the collapse time of cavitation bubbles. While for the surface containing gas, the direction of movement of the bubble accompanying the microjet will greatly change during the collapse of the cavitation bubble, and the collapse time seems to be independent of the dimensionless ratio γ. These achievements shed the light for engineering to avoid the damage of the microjet caused by designing suitable surface geometry.

References

1.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Oxford, UK.
2.
Luo
,
X. W.
,
2020
,
Basic of Cavitation and Its Applications
,
Tsinghua University Press
,
Beijing, China
.
3.
Knappy
,
R. T.
,
1981
,
Cavitation
,
Water Conservancy Publishing Press
,
Beijing, China
(in English).
4.
Lauterborn
,
W.
, and
Kurz
,
T.
,
2010
, “
Physics of Bubble Oscillations
,”
Rep. Prog. Phys.
,
73
(
10
), p.
106501
.10.1088/0034-4885/73/10/106501
5.
Naudé
,
C. F.
, and
Ellis
,
A. T.
,
1961
, “
On the Mechanism of Cavitation Damage by Non-Hemispherical Cavities Collapsing in Contact With a Solid Boundary
,”
ASME J. Basic Eng.
,
83
(
4
), pp.
648
656
.10.1115/1.3662286
6.
Plesset
,
M. S.
, and
Chapman
,
R. B.
,
1971
, “
Collapse of an Initially Spherical Vapour Cavitation in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
,
47
(
2
), pp.
283
290
.10.1017/S0022112071001058
7.
Vogel
,
A.
, and
Lauterborn
,
W.
,
1988
, “
Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics
,”
Appl. Opt.
,
27
(
9
), pp.
1869
1876
.10.1364/AO.27.001869
8.
Lindau
,
O.
, and
Lauterborn
,
W.
,
2003
, “
Cinematographic Observation of the Collapse and Rebound of a Laser-Produced Cavitation Bubble Near a Wall
,”
J. Fluid Mech.
,
479
, pp.
327
348
.10.1017/S0022112002003695
9.
Yang
,
Y. X.
,
Wang
,
Q. X.
, and
Keat
,
T. S.
,
2013
, “
Dynamic Features of a Laser-Induced Cavitation Bubble Near a Solid Boundary
,”
Ultrason. Sonochem.
,
20
(
4
), pp.
1098
103
.10.1016/j.ultsonch.2013.01.010
10.
Li
,
X. F.
, and
Zhang
,
Y. N.
,
2019
, “
Retardant Effects of Collapsing Dynamics of a Laser-Induced Cavitation Bubble Near a Solid Wall
,”
Symmetry
,
11
(
8
), p.
1051
.10.3390/sym11081051
11.
Yu
,
Q.
,
Ma
,
X.
,
Xu
,
Z.
,
Zhao
,
J.
,
Wang
,
D.
, and
Huang
,
Z.
,
2021
, “
Thermodynamic Effect of Single Bubble Near a Rigid Wall
,”
Ultrason. Sonochem.
,
71
, p.
105396
.10.1016/j.ultsonch.2020.105396
12.
Zhang
,
M.
,
Chang
,
Q.
,
Ma
,
X.
,
Wang
,
G.
, and
Huang
,
B.
,
2019
, “
Physical Investigation of the Counter-Jet Dynamics During the Bubble Rebound
,”
Ultrason. Sonochem.
,
58
, p.
104706
.10.1016/j.ultsonch.2019.104706
13.
Wang
,
J.
,
Li
,
H.
,
Guo
,
W.
,
Wang
,
Z.
,
Du
,
T.
,
Wang
,
Y.
,
Abe
,
A.
, and
Huang
,
C.
,
2021
, “
Rayleigh–Taylor Instability of Cylindrical Water Droplet Induced by Laser-Produced Cavitation Bubble
,”
J. Fluid Mech.
,
919
, pp.
1
27
.10.1017/jfm.2021.401
14.
Huang
,
G.
,
Zhang
,
M.
,
Ma
,
X.
,
Chang
,
Q.
,
Zheng
,
C.
, and
Huang
,
B.
,
2020
, “
Dynamic Behavior of a Single Bubble Between the Free Surface and Rigid Wall
,”
Ultrason. Sonochem.
,
67
, p.
105147
.10.1016/j.ultsonch.2020.105147
15.
Zhou
,
Y. K.
, and
Hammitt
,
F. G.
,
1983
, “
Vibratory Cavitation Erosion in Aqueous Solutions
,”
Wear
,
87
(
2
), pp.
163
171
.10.1016/0043-1648(83)90031-5
16.
Tomita
,
Y.
,
Robinson
,
P. B.
,
Tong
,
R. P.
, and
Blake
,
J. R.
,
2002
, “
Growth and Collapse of Cavitation Bubbles Near a Curved Rigid Boundary
,”
J. Fluid Mech.
,
466
, pp.
259
283
.10.1017/S0022112002001209
17.
Li
,
Y. J.
,
2009
,
Research on the Mechanism of Surface Topography in the Process of Cavitation Erosion
,
Tsinghua University
,
Beijing, China
.
18.
Dular
,
M.
, and
Osterman
,
A.
,
2008
, “
Pit Clustering in Cavitation Erosion
,”
Wear
,
265
(
5–6
), pp.
811
820
.10.1016/j.wear.2008.01.005
19.
Li
,
S.
,
Zhang
,
A. M.
, and
Han
,
R.
,
2018
, “
Letter: Counter-Jet Formation of an Expanding Bubble Near a Curved Elastic Boundary
,”
Phys. Fluids
,
30
(
12
), p.
121703
.10.1063/1.5081786
20.
Ma
,
C.
,
Shi
,
D.
,
Chen
,
Y.
,
Cui
,
X.
, and
Wang
,
M.
,
2020
, “
Experimental Research on the Influence of Different Curved Rigid Boundaries on Electric Spark Bubbles
,”
Materials
,
13
(
18
), p.
3941
.10.3390/ma13183941
21.
Liu
,
Y.
, and
Peng
,
Y.
,
2020
, “
Study on the Collapse Process of Cavitation Bubbles Near the Concave Wall by Lattice Boltzmann Method Pseudo-Potential Model
,”
Energies
,
13
(
17
), p.
4398
.10.3390/en13174398
22.
Trummler
,
T.
,
Bryngelson
,
S. H.
,
Schmidmayer
,
K.
,
Schmidt
,
S. J.
,
Colonius
,
T.
, and
Adams
,
N. A.
,
2020
, “
Near-Surface Dynamics of a Gas Bubble Collapsing Above a Crevice
,”
J. Fluid Mech.
,
899
, epub.10.1017/jfm.2020.432
23.
Andrews
,
E. D.
,
Rivas
,
D. F.
, and
Peters
,
I. R.
,
2020
, “
Cavity Collapse Near Slot Geometries
,”
J. Fluid Mech.
,
901
, epub.10.1017/jfm.2020.552
24.
Kim
,
D.
, and
Kim
,
D.
,
2020
, “
Underwater Bubble Collapse on a Ridge-Patterned Structure
,”
Phys. Fluids
,
32
(
5
), p.
053312
.10.1063/5.0006372
25.
Poar
,
T.
,
Agre
,
V.
, and
Petkovek
,
R.
,
2021
, “
Laser-Induced Cavitation Bubbles and Shock Waves in Water Near a Concave Surface
,”
Ultrason. Sonochem.
73, p. 105456.10.1016/j.ultsonch.2020.105456
26.
Gonzalez-Avila
,
S. R.
,
Nguyen
,
D. M.
,
Arunachalam
,
S.
,
Domingues
,
E. M.
,
Mishra
,
H.
, and
Ohl
,
C.-D.
,
2020
, “
Mitigating Cavitation Erosion Using Biomimetic Gas-Entrapping Microtextured Surfaces (GEMS)
,”
Sci. Adv.
,
6
(
13
), epub.10.1126/sciadv.aax6192
27.
Geng
,
S.
,
Yao
,
Z.
,
Zhong
,
Q.
,
Du
,
Y.
,
Xiao
,
R.
, and
Wang
,
F.
,
2021
, “
Propagation of Shock Wave at the Cavitation Bubble Expansion Stage Induced by a Nanosecond Laser Pulse
,”
ASME J. Fluids Eng.
,
143
(
5
), p. 051209.10.1115/1.4049933
28.
Zawala
,
J.
, and
Dabros
,
T.
,
2013
, “
Analysis of Energy Balance During Collision of a Gas Bubble With a Solid Wall
,”
Phys. Fluids
,
25
(
12
), p.
123101
.10.1063/1.4847015
29.
Sun
,
H.
,
Yu
,
L. H.
, and
Hussain
,
I.
,
2012
, “
The Effect of Adding Isooctanol on the Contact Angle of Water and Metal Surface
,”
CIESC J.
, pp.
38
41
.
30.
Wang
,
X. D.
, and
Peng
,
X. F.
,
2003
, “
Measuring Technique of Contact Angle and Contact Angle Hysteresis on Rough Solid Surfaces II: Contact Angle Hysteresis on Rough Stainless Steel
,”
J. Appl. Fundam. Eng. Sci.
, pp.
296
303
.
31.
Shan
,
J. Y.
, and
Yang
,
Z. J.
,
2019
,
Synthesis and Properties of Free Radical/Cationic Hybrid 3D Printing Photosensitive Resin
,
Plastics Science and Technology
.
32.
Ren
,
X. D.
,
2017
,
Laser-Induced Cavitation Strengthening Theory and Technology
,
Science Press
.
You do not currently have access to this content.