Abstract

Wall-Modeled Large Eddy Simulation (WMLES) has been used to study a subsonic vertical manifolds (VMs) in terms of maldistribution, i.e., how much the flow splitting deviates from an equal flow distribution between the outlets. The analyzed configuration is characterized by a wide-angle plane diffuser and by four outlets and it has been studied at high Reynolds number (Re*=10000, with Re*=u*Dh/ν, where u* is the friction velocity at the inlet, Dh=4A/P is the hydraulic diameter with A the cross-sectional area at the inlet and P the perimeter, ν is the kinematic viscosity). In the basic configuration, a jet flow develops in the diffuser with two stable flow separation regions at the inclined walls, which prevent an equal flow distribution at the outlets, and determine a maldistribution around ε=37%, where ε is a parameter that quantifies the flow rate deviation from an equal distribution. To increase the equal flow distribution between the outlets, guide vanes have been used. A conceptual model to reduce the maldistribution has been developed using the momentum and the mechanical energy conservation laws. The model uses as main parameter the relative distance between the guide vanes, and it allows to minimize ε. Taking advantage of this method, the maldistribution has been reduced from ε=11.20%, for the case of equally distributed guide vanes, to ε=0.32% in the optimized configuration. The methodology is of general use also for hydraulic systems.

References

1.
Ibrahim
,
H.
,
Ahmed
,
W.
,
Abdou
,
S.
, and
Blagojevic
,
V.
,
2018
, “
Experimental and Numerical Investigations of Flow Through Catalytic Converters
,”
Int. J. Heat Mass Transfer
,
127
, pp.
546
560
.10.1016/j.ijheatmasstransfer.2018.07.052
2.
Park
,
N.
,
Yoon
,
S.
,
Jeong
,
W.
, and
Jeong
,
Y.
,
2021
, “
A Study on the Evaluation of Flow Distribution Evenness in Parallel-Arrayed-Type Low-Pressure Menbrane Module Piping
,”
Membranes
,
11
(
10
), p.
751
.10.3390/membranes11100751
3.
You
,
Y.
,
Wu
,
Z.
,
Liu
,
H.
,
Zhang
,
A.
,
Zeng
,
X.
, and
Shen
,
X.
,
2018
, “
A Flexible Hybrid Cfd Model for Refrigeran Mal-Distribution Among Minichannels in Parallel Flow Condensers
,”
Int. J. Refrig.
,
91
, pp.
80
88
.10.1016/j.ijrefrig.2018.05.014
4.
Basu
,
S.
,
Wang
,
C.
, and
Chen
,
K.
,
2010
, “
Analytical Model of Flow Distribution in Polymer Electrolyte Fuel Cell Channels
,”
Chem. Eng. Sci.
,
65
(
23
), pp.
6145
6154
.10.1016/j.ces.2010.08.036
5.
Dammalapati
,
S.
,
Aghalayam
,
P.
, and
Kaisare
,
N.
,
2021
, “
Modeling the Effects of the Inlet Manifold Design on the Performance of a Diesel Oxidation Catalytic Converter
,”
Ind. Eng. Chem. Res.
,
60
(
10
), pp.
3860
3870
.10.1021/acs.iecr.0c05061
6.
Garcia-Guendulain
,
J.
,
Riesco-Avila
,
J.
,
Elizalde-Blancas
,
F.
,
Belman-Flores
,
J.
, and
Serrano-Arellano
,
J.
,
2018
, “
Numerical Study on the Effect of Distribution Plates in the Manifolds on the Flow Distribution and Thermal Performance of a Flat Plate Solar Collectors
,”
Energies
,
11
(
5
), p.
1077
.10.3390/en11051077
7.
Kline
,
S.
,
Abbott
,
D.
, and
Fox
,
R.
,
1959
, “
Optimum Design of Straight-Walled Diffusers
,”
ASME J. Basic Eng.
,
81
(
3
), pp.
321
329
.10.1115/1.4008462
8.
Bajura
,
R.
,
1971
, “
A Model for Flow Distribution in Manifolds
,”
J. Eng. Power
,
93
(
1
), pp.
7
12
.10.1115/1.3445410
9.
Bajura
,
R.
, and
Jones
,
E.
,
1976
, “
Flow Distribution Manifolds
,”
ASME J. Fluids Eng.
,
98
(
4
), pp.
654
665
.10.1115/1.3448441
10.
Shen
,
P.
,
1992
, “
The Effect of Friction on Flow Distribution in Dividing and Combining Manifolds
,”
ASME J. Fluids Eng.
,
114
(
1
), pp.
121
123
.10.1115/1.2909987
11.
Zhengqing
,
M.
, and
Tongmo
,
X.
,
2006
, “
Single Phase Flow Characteristics in the Headers and Connecting Tube Parallel Tube Platen Systems
,”
Appl. Therm. Eng.
,
26
(
4
), pp.
396
402
.10.1016/j.applthermaleng.2005.06.013
12.
Zhang
,
W.
,
Li
,
A.
,
Gao
,
R.
, and
Li
,
C.
,
2018
, “
Effects of Geometric Structures on Flow Uniformity and Pressure Drop in Dividing Manifold System With Parallel Pipe Array
,”
Int. J. Heat Mass Transfer
,
127
, pp.
870
881
.10.1016/j.ijheatmasstransfer.2018.07.111
13.
Chen
,
A.
, and
Sparrow
,
E.
,
2009
, “
Turbulence Modeling for Flow in a Distribution Manifold
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1573
1581
.10.1016/j.ijheatmasstransfer.2008.08.006
14.
Wang
,
J.
,
2011
, “
Theory of Flow Distribution in Manifolds
,”
Chem. Eng. J.
,
168
(
3
), pp.
1331
1345
.10.1016/j.cej.2011.02.050
15.
Dąbrowski
,
P.
, and
Kumar
,
R.
,
2021
, “
Minichannel and Minigap Classification Criteria Based on the Aspect Ratio of the Minigeometry: A Numerical Study
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105685
.10.1016/j.icheatmasstransfer.2021.105685
16.
Liu
,
H.
, and
Li
,
P.
,
2013
, “
Even Distribution/Dividing of Single Phase Fluids by Symmetric Bifurcation on Flow Channels
,”
Int. J. Heat Fluid Flow
,
40
, pp.
165
179
.10.1016/j.ijheatfluidflow.2013.01.011
17.
Mazur
,
M.
,
Bhatelia
,
T.
,
Kuan
,
B.
,
Patel
,
J.
,
Webley
,
P. A.
,
Brandt
,
M.
,
Pareek
,
V.
, and
Utikar
,
R.
,
2019
, “
Additively Manufactured, Highly-Uniform Flow Distributor for Process Intensification
,”
Chem. Eng. Process.: Process Intensif.
,
143
, p.
107595
.10.1016/j.cep.2019.107595
18.
Porter
,
S.
,
Saul
,
J.
,
Aleksandrova
,
S.
,
Medina
,
H.
, and
Benjamin
,
S.
,
2016
, “
Hybrid Flow Modelling Approach Applied to Automotive Catalysts
,”
Appl. Math. Model.
,
40
(
19–20
), pp.
8435
8445
.10.1016/j.apm.2016.04.024
19.
Rebrov
,
E.
,
Ismagilov
,
I.
,
Ekatpure
,
R.
,
Croon
,
M. D.
, and
Schouten
,
J.
,
2007
, “
Header Design for Flow Equalization in Microstructured Reactors
,”
AIChE J.
,
53
(
1
), pp.
28
38
.10.1002/aic.11043
20.
Zhang
,
Z.
, and
Li
,
Y.
,
2003
, “
Cfd Simulation on Inlet Configuration of Plate-Fin Heat Exchangers
,”
Cryogenics
,
43
(
12
), pp.
673
678
.10.1016/S0011-2275(03)00179-6
21.
Belvin
,
R.
,
1984
,
Applied Fluid Dynamics Handbook
,
Reinhold Co., Van Nostrand
, New York.
22.
Reneau
,
L.
,
Johnston
,
J.
, and
Kline
,
S.
,
1967
, “
Performance and Design of Straight, Two-Dimensional Diffuser
,”
J. Basic Eng.
,
89
(
1
), pp.
141
150
.10.1115/1.3609544
23.
Klugmann
,
M.
,
Dabrowski
,
P.
, and
Mikielewicz
,
D.
,
2018
, “
Pressure Drop Related to Flow Maldistribution in a Model Minichannel Plate Heat Exchanger
,”
Arch. Thermodyn.
,
39
(
2
), pp.
123
146
.10.1515/aoter-2018-0015
24.
Sahin
,
B.
, and
Ward-Smith
,
A.
,
1987
, “
The Use of Perforated Plates to Control the Flow Emerging From a Wide-Angle Diffuser, With Application to Electrostatic Precipitator Design
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
124
131
.10.1016/0142-727X(87)90011-7
25.
Barratt
,
D.
, and
Kim
,
T.
,
2015
, “
A Banked Wide-Angle Diffuser With Application to Electrostatic Precipitators
,”
J. Power Energy
,
229
(
1
), pp.
88
98
.10.1177/0957650914553458
26.
Kim
,
D.
,
Jeong
,
S.
,
Kim
,
J.
, and
Lee
,
S.
,
2021
, “
Structure and Arrangement of Perforated Plates for Uniform Flow Distribution in an Electrostatic Precipitator
,”
J. Air Waste Manage. Assoc.
,
71
(
3
), pp.
328
338
.10.1080/10962247.2020.1808114
27.
Idelchik
,
I.
,
2007
,
Handbook of Hydraulic Resistance
,
Begell House, inc., New York.
28.
Mariotti
,
A.
,
Buresti
,
G.
, and
Salvetti
,
M.
,
2014
, “
Control of the Turbulent Flow in a Plane Diffuser Through Optimized Contoured Cavities
,”
Eur. J. Mech. B/Fluids
,
48
, pp.
254
265
.10.1016/j.euromechflu.2014.04.009
29.
Yang
,
J.
,
Zhang
,
Y.
,
Chen
,
H.
, and
Fu
,
S.
,
2020
, “
Unsteady Flow Control of a Plane Diffuser Based on a Karman-Vortex Generator
,”
AIP Adv.
,
10
(
5
), p.
055314
.10.1063/5.0004559
30.
Dabrowski
,
P.
,
2020
, “
Mitigation of Flow Maldistribution in Minichannel and Minigap Heat Exchanger by Introducing Threshold in Manifolds
,”
J. Appl. Fluid Mech.
,
13
(
3
), pp.
815
826
.10.29252/JAFM.13.03.30454
31.
Miller
,
D.
,
1978
,
Internal Flow Systems
,
BHRA Fluid Engineering
, Bedfordshire, UK.
32.
Piomelli
,
U.
, and
Balaras
,
E.
,
2002
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
349
374
.10.1146/annurev.fluid.34.082901.144919
33.
Kaltenbach
,
H.
,
Fatica
,
M.
,
Mittal
,
R.
,
Lund
,
T.
, and
Moin
,
P.
,
1999
, “
Study of Flow in a Planar Asymmetric Diffuser Using Large-Eddy Simulation
,”
J. Fluid Mech.
,
390
, pp.
151
185
.10.1017/S0022112099005054
34.
Iaccarino
,
G.
,
2001
, “
Prediction of a Turbulent Separated Flow Using Commercial Cfd Codes
,”
ASME J. Fluids Eng.
, 123(4), pp.
819
828
.10.1115/1.1400749
35.
Kim
,
J.
,
Shin
,
J.
,
Sohn
,
S.
, and
Yoon
,
S.
,
2019
, “
Analysis of Non-Uniform Flow Distribution in Parallel Micro-Channels
,”
J. Mech. Sci. Technol.
,
33
(
8
), pp.
3859
3864
.10.1007/s12206-019-0729-8
36.
Zang
,
Y.
,
Street
,
R.
, and
Koseff
,
J.
,
1994
, “
A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
,
114
(
1
), pp.
18
33
.10.1006/jcph.1994.1146
37.
Alves
,
M.
,
Oliveira
,
P.
, and
Pinho
,
F.
,
2003
, “
A Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
47
75
.10.1002/fld.428
38.
Fadlun
,
E.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
39.
Roman
,
F.
,
Napoli
,
E.
,
Milici
,
B.
, and
Armenio
,
V.
,
2009
, “
An Improved Immersed Boundary Method for Curvilinear Grids
,”
Comput. Fluids
,
38
(
8
), pp.
1510
1527
.10.1016/j.compfluid.2008.12.004
40.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
41.
Bose
,
S.
, and
Park
,
G.
,
2018
, “
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
535
561
.10.1146/annurev-fluid-122316-045241
42.
Kaltenbach
,
H.
,
1997
, “
Cell Aspect Ratio Dependence of Anisotropy Measures for Resolved and Subgrid Scale Stresses
,”
J. Comput. Phys.
,
136
(
2
), pp.
399
410
.10.1006/jcph.1997.5755
43.
Cabot
,
W.
, and
Moin
,
P.
,
2000
, “
Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow
,”
Flow Turbul. Combust.
,
63
(
1/4
), pp.
269
291
.10.1023/A:1009958917113
44.
Nicoud
,
F.
,
Bagget
,
J.
,
Moin
,
O.
, and
Cabot
,
W.
,
2001
, “
Large Eddy Simulation Wall-Model Based on Suboptimal Control Theory and Linear Stochastic Estimation
,”
Phys. Fluids
,
13
(
10
), pp.
2968
2984
.10.1063/1.1389286
45.
Roman
,
F.
,
Armenio
,
V.
, and
Fröhlich
,
J.
,
2009
, “
A Simple Wall-Layer Model for Large Eddy Simulation With Immersed Boundary Methode
,”
Phys. Fluids
,
21
(
10
), p.
101701
.10.1063/1.3245294
46.
Blanchard
,
S.
,
Odier
,
N.
,
Gicquel
,
L.
,
Cuenot
,
B.
, and
Nicoud
,
F.
,
2021
, “
Stochastic Forcing for Sub-Grid Scale Models in Wall-Modeled Large-Eddy Simulation
,”
Phys. Fluids
,
33
(
9
), p.
095123
.10.1063/5.0063728
47.
Piomelli
,
U.
,
2008
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Prog. Aerosp. Sci.
,
44
(
6
), pp.
437
446
.10.1016/j.paerosci.2008.06.001
48.
Brundrett
,
E.
, and
Baines
,
W.
,
1964
, “
The Production and Diffusion of Vorticity in Duct Flow
,”
J. Fluid Mech.
,
19
(
3
), pp.
375
394
.10.1017/S0022112064000799
49.
Orlanski
,
I.
,
1976
, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
,
21
(
3
), pp.
251
269
.10.1016/0021-9991(76)90023-1
50.
Chang
,
P.
,
1970
,
Separation of Flow
,
Pergamon Press
, Oxford, UK.
51.
Herbst
,
A.
,
Schlatter
,
P.
, and
Henningson
,
D.
,
2007
, “
Simulation of Turbulent Flow in a Plane Asymmetric Diffuser
,”
Flow Turbul. Combust.
,
79
(
3
), pp.
275
306
.10.1007/s10494-007-9091-5
52.
Lan
,
H.
,
Armaly
,
B.
, and
Drallmeier
,
J.
,
2009
, “
Turbulent Forced Convection in a Plane Asymmetric Diffuser: Effect of Diffuser Angle
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071702
.10.1115/1.2977545
You do not currently have access to this content.