Abstract

In this technical brief, we report the flow characteristics of a time-periodic electrokinetically mediated flow of generalized Maxwell fluid through a straight planar microchannel considering the interfacial slip effect on surface potential. Critical values of Reynolds number are obtained at different relaxation times where flow reversal initialization occurs in the core region of the microchannel. Thinner electrical double layer results in higher velocity amplitude, which is further amplified for apparent zeta potential. Moreover, dissimilar zeta potentials result in the asymmetrical amplitude of the velocity near and away from the walls of the microchannel at higher Reynolds numbers. The value of the volumetric flow rate oscillates with the relaxation time for the apparent and the true zeta potential.

References

1.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
(
5
), pp.
1084
1091
.10.1021/j100787a019
2.
Chakraborty
,
S.
, and
Ray
,
S.
,
2008
, “
Mass Flow-Rate Control Through Time Periodic Electro-Osmotic Flows in Circular Microchannels
,”
Phys. Fluids
,
20
(
8
), p.
083602
.10.1063/1.2949306
3.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes' Second Problem
,”
Anal. Chem.
,
73
(
21
), pp.
5097
5102
.10.1021/ac015546y
4.
Das
,
S.
, and
Chakraborty
,
S.
,
2006
, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
,
559
(
1
), pp.
15
24
.10.1016/j.aca.2005.11.046
5.
Peralta
,
M.
,
Bautista
,
O.
,
Méndez
,
F.
, and
Bautista
,
E.
,
2018
, “
Pulsatile Electroosmotic Flow of a Maxwell Fluid in a Parallel Flat Plate Microchannel With Asymmetric Zeta Potentials
,”
Appl. Math. Mech.
,
39
(
5
), pp.
667
684
.10.1007/s10483-018-2328-6
6.
Akhtar
,
S.
,
Jamil
,
S.
,
Shah
,
N. A.
,
Chung
,
J. D.
, and
Tufail
,
R.
,
2022
, “
Effect of Zeta Potential in Fractional Pulsatile Electroosmotic Flow of Maxwell Fluid
,”
Chin. J. Phys.
,
76
, pp.
59
67
.10.1016/j.cjph.2021.12.032
7.
Liu
,
Q. S.
,
Jian
,
Y. J.
, and
Yang
,
L. g.
,
2011
, “
Time Periodic Electroosmotic Flow of the Generalized Maxwell Fluids Between Two Micro-Parallel Plates
,”
J. Non-Newton. Fluid Mech.
,
166
(
9–10
), pp.
478
486
.10.1016/j.jnnfm.2011.02.003
8.
Joly
,
L.
,
Ybert
,
C.
,
Trizac
,
E.
, and
Bocquet
,
L.
,
2006
, “
Liquid Friction on Charged Surfaces: From Hydrodynamic Slippage to Electrokinetics
,”
J. Chem. Phys.
,
125
(
20
), p.
204716
.10.1063/1.2397677
9.
Pabi
,
S.
,
Mehta
,
S. K.
, and
Pati
,
S.
,
2021
, “
Analysis of Thermal Transport and Entropy Generation Characteristics for Electroosmotic Flow Through a Hydrophobic Microchannel Considering Viscoelectric Effect
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105519
.10.1016/j.icheatmasstransfer.2021.105519
10.
Banerjee
,
D.
,
Mehta
,
S. K.
,
Pati
,
S.
, and
Biswas
,
P.
,
2021
, “
Analytical Solution to Heat Transfer for Mixed Electroosmotic and Pressure-Driven Flow Through a Microchannel With Slip-Dependent Zeta Potential
,”
Int. J. Heat Mass Transfer
,
181
, p.
121989
.10.1016/j.ijheatmasstransfer.2021.121989
11.
Vasista
,
K. N.
,
Mehta
,
S. K.
,
Pati
,
S.
, and
Sarkar
,
S.
,
2021
, “
Electroosmotic Flow of Viscoelastic Fluid Through a Microchannel With Slip-Dependent Zeta Potential
,”
Phys. Fluids.
,
33
(
12
), p.
123110
.10.1063/5.0073367
12.
Rojas
,
G.
,
Arcos
,
J.
,
Peralta
,
M.
,
Méndez
,
F.
, and
Bautista
,
O.
,
2017
, “
Pulsatile Electroosmotic Flow in a Microcapillary With the Slip Boundary Condition
,”
Colloids Surf. A
513
, pp.
57
65
.10.1016/j.colsurfa.2016.10.064
13.
Kim
,
H.
,
Khan
,
A. I.
, and
Dutta
,
P.
,
2019
, “
Time-Periodic Electro-Osmotic Flow With Nonuniform Surface Charges
,”
ASME J. Fluids Eng. Trans. ASME
,
141
(
8
), p.
081201
.10.1115/1.4042469
You do not currently have access to this content.