Abstract

This effort presents a novel approach to interrogate efficiency for unsteady, undulating propulsion using variable momentum and energy conservation (VMEC) assessments. These integral approaches utilize large amounts of data from computational fluid dynamics (CFD) to address present difficulties associated with separating thrust from drag associated with propelling bodies as well as potentially resolve issues associated with defining a nonzero efficiency for a body in self-propulsion. Such a fundamental issue is addressed through strategic control volume assessments of the momentum and energy conservation equations. In this work, the Method of Manufactured Solutions (MMS) is used to verify the integral-based evaluation approach and better quantify output. The MMS results indicate the method is valid and that one can separate work associated with lift and drag from the energy budget. This separation procedure provides a means to separate propulsive and drag forces. The effort then studies previously validated CFD simulations of heaving and pitching foils to provide insight associated with separating axial forces into their thrust and drag components for highly complex systems. The effort then presents a new efficiency metric that can obtain nonzero efficiencies in self-propulsion. Overall, the results indicate that energy-based assessments provide insight that is a step forward toward isolating loss from propulsive mechanisms and developing proper metrics of efficiency.

References

1.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Grosenbaugh
,
M. A.
,
1993
, “
Optimal Thrust Development in Oscillating Foils With Application to Fish Propulsion
,”
J. Fluids Struct.
,
7
(
2
), pp.
205
224
.10.1006/jfls.1993.1012
2.
Bale
,
R.
,
Shirgaonkar
,
A. A.
,
Neveln
,
I. D.
,
Bhalla
,
A. P. S.
,
MacIver
,
M. A.
, and
Patankar
,
N. A.
,
2014
, “
Separability of Drag and Thrust in Undulatory Animals and Machines
,”
Sci. Rep.
,
4
(
1
), pp.
1
11
.10.1038/srep07329
3.
Ding
,
Y.
,
Sharpe
,
S. S.
,
Masse
,
A.
, and
Goldman
,
D. I.
,
2012
, “
Mechanics of Undulatory Swimming in a Frictional Fluid
,”
PLoS Comput. Biol.
,
8
, pp.
1
13
.10.1371/journal.pcbi.1002810
4.
Integrative
,
S.
,
Biology
,
C.
,
Nov
,
N.
,
Schultz
,
W. W.
, and
Webb
,
P. W.
,
2016
, “
Power Requirements of Swimming: Do New Methods Resolve Old Questions?
,”
42
, pp.
1018
1025
.
5.
Maertens
,
A. P.
,
Triantafyllou
,
M. S.
, and
Yue
,
D. K. P.
,
2015
, “
Efficiency of Fish Propulsion
,”
Bioinspiration Biomimetics
,
10
(
4
), p.
046013
.10.1088/1748-3190/10/4/046013
6.
Gibouin
,
F.
,
Raufaste
,
C.
,
Bouret
,
Y.
, and
Argentina
,
M.
,
2018
, “
Study of the Thrust-Drag Balance With a Swimming Robotic Fish
,”
Phys. Fluids
,
30
(
9
), p.
091901
.10.1063/1.5043137
7.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2008
, “
Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
211
(
10
), pp.
1541
1558
.10.1242/jeb.015644
8.
Moored
,
K. W.
,
2018
, “
Unsteady Three-Dimensional Boundary Element Method for Self-Propelled Bio-Inspired Locomotion
,”
Comput. Fluids
,
167
, pp.
324
340
.10.1016/j.compfluid.2018.03.045
9.
Deng
,
H.-B.
,
Xu
,
Y.-Q.
,
Chen
,
D.-D.
,
Dai
,
H.
,
Wu
,
J.
, and
Tian
,
F.-B.
,
2013
, “
On Numerical Modeling of Animal Swimming and Flight
,”
Comput. Mech.
,
52
(
6
), pp.
1221
1242
.10.1007/s00466-013-0875-2
10.
McCormick
,
B. W.
,
1999
,
Aerodynamics of V/STOL Flight
, Vol.
328
, Courier Corporation, Chelmsford, MA.
11.
Currie
,
I. G.
,
2003
, “
Fundamental Mechanics of Fluids
,”
Mech. Eng.
,
1
(
xiv
), p.
525
.
12.
Drela
,
M.
, and
Kohler
,
T. J.
,
2009
, “
Power Balance in Aerodynamic Flows
,”
AIAA J.
,
47
(
7
), pp.
1761
1771
.10.2514/1.42409
13.
Andersson
,
J.
,
Eslamdoost
,
A.
,
Capitao Patrao
,
A.
,
Hyensjö
,
M.
, and
Bensow
,
R. E.
,
2018
, “
Energy Balance Analysis of a Propeller in Open Water
,”
Ocean Eng.
,
158
, pp.
162
170
.10.1016/j.oceaneng.2018.03.067
14.
Loubimov
,
G.
, and
Kinzel
,
M.
,
2021
, “
A Novel Approach to Calculating Induced Drag From Computational Fluid Dynamics
,”
AIP Adv.
,
11
(
7
), p.
075009
.10.1063/5.0051080
15.
Roache
,
P. J.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
4
10
.10.1115/1.1436090
16.
Roy
,
C. J.
,
Nelson
,
C. C.
,
Smith
,
T. M.
, and
Ober
,
C. C.
,
2004
, “
Verification of Euler/Navier-Stokes Codes Using the Method of Manufactured Solutions
,”
Int. J. Numer. Methods Fluids
,
44
(
6
), pp.
599
620
.10.1002/fld.660
17.
Read
,
D. A.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2003
, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
,
17
(
1
), pp.
163
183
.10.1016/S0889-9746(02)00115-9
18.
Siemens
,
2019
, “
STAR CCM+ Users Manual
,” Siemens.
19.
Venkatakrishnan
,
V.
,
1995
, “
Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids With Limiters
,”
J. Comput. Phys.
,
118
(
1
), pp.
120
130
.10.1006/jcph.1995.1084
20.
Cole
,
J. A.
,
Loubimov
,
G.
, and
Kinzel
,
M.
,
2021
, “
Comparison of Computational Methods for Hydrodynamic Performance Prediction of Oscillating Marine Propulsors
,”
Ocean Eng.
,
242
, p.
110002
.10.1016/j.oceaneng.2021.110002
You do not currently have access to this content.