Abstract

For Francis turbines, speed-no-load (SNL) represents one of the most detrimental operating conditions, marked by significant pressure and strain fluctuations on the runner. Mitigating these fluctuations necessitates a comprehensive understanding and characterization of the flow phenomena responsible for their generation. This paper presents an experimental investigation of the flow at the inlet of a Francis turbine runner model operating in speed-no-load condition using high-speed stereoscopic and endoscopic particle image velocimetry (PIV). The measurements are made in a radial-azimuthal plane that covers the vaneless space and a large region in the interblade channel. This study marks the first-time measurement of critical flow phenomena at this operating point, performed in the runner. Instantaneous and average velocity fields are analyzed, along with other statistical data. The results not only confirm the stochastic nature of the flow at speed-no-load but also highlight the general structure of the flow observed in other studies. The high velocity fluctuations on the suction side are associated with a backflow extending into the vaneless space and a circulation zone occasionally generated by this backflow. Both phenomena are frequently present, but fluctuate stochastically. Additionally, two other circulation zones intermittently form on the pressure side of the blades. The presence of vortices, smaller than the circulation zones, near the blade's leading edge correlates with the backflow intensity.

References

1.
Seidel
,
U.
,
Mende
,
C.
,
Hübner
,
B.
,
Weber
,
W.
, and
Otto
,
A.
,
2014
, “
Dynamic Loads in Francis Runners and Their Impact on Fatigue Life
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032054
.10.1088/1755-1315/22/3/032054
2.
Morissette
,
J.
,
Chamberland-Lauzon
,
J.
,
Nennemann
,
B.
,
Monette
,
C.
,
Giroux
,
A.
,
Coutu
,
A.
, and
Nicolle
,
J.
,
2016
, “
Stress Predictions in a Francis Turbine at No-Load Operating Regime
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
072016
.10.1088/1755-1315/49/7/072016
3.
Mende
,
C.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
Progress in Load Prediction for Speed-No-Load Operation in Francis Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
062017
.10.1088/1755-1315/49/6/062017
4.
Gilis
,
A.
,
Coulaud
,
M.
,
Munoz
,
A.
,
Maciel
,
Y.
, and
Houde
,
S.
,
2022
, “
Experimental Study of the Flow of the Tr-Francis Turbine Along the No-Load Curve
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
1079
(
1
), p.
012019
.10.1088/1755-1315/1079/1/012019
5.
Gagnon
,
P.-L.
,
2021
, “
Preliminary Numerical Simulations of a Medium Head Francis Turbine at Speed No-Load
,” Ph.D. dissertation,
Université Laval
.
6.
Bourgeois
,
J.
,
2023
, “
Développement D'un Mécanisme de Contrôle Des Tourbillons en Colonne Dans Les Turbines Hydrauliques Opérant à Marche à Vide à L'aide de Simulations Numériques D'écoulement
,” M.Sc.,
Université Laval
.
7.
Fortin
,
M.
,
Nennemann
,
B.
, and
Houde
,
S.
,
2022
, “
Characterization of No-Load Conditions for a High Head Francis Turbine Based on the Swirl Level
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
1079
(
1
), p.
012010
.10.1088/1755-1315/1079/1/012010
8.
Houde
,
S.
,
Dumas
,
G.
, and
Deschênes
,
C.
,
2018
, “
Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111104
.10.1115/1.4039713
9.
Nicolle
,
J.
,
Morissette
,
J. F.
, and
Giroux
,
A. M.
,
2012
, “
Transient CFD Simulation of a Francis Turbine Startup
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
062014
.10.1088/1755-1315/15/6/062014
10.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
, and
Avellan
,
F.
,
2017
, “
Experimental Evidence of Inter-Blade Cavitation Vortex Development in Francis Turbines at Deep Part Load Condition
,”
Exp. Fluids
,
58
(
10
), p.
142
.10.1007/s00348-017-2421-z
11.
Yamamoto
,
K.
,
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
, and
Avellan
,
F.
,
2016
, “
Numerical and Experimental Evidence of the Inter-Blade Cavitation Vortex Development at Deep Part Load Operation of a Francis Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
082005
.10.1088/1755-1315/49/8/082005
12.
Doussot
,
F.
,
2019
, “
Simulation Numérique de L'écoulement de Charge Partielle Dans Les Turbines Francis: Analyse de la Topologie et de la Dynamique Des Vortex Inter-Aubes
,”
Ph.D. dissertation
,
Université Grenoble Alpes
.https://theses.hal.science/tel-02475760
13.
Liu
,
M.
,
Zhou
,
L. J.
,
Wang
,
Z. W.
,
Liu
,
D. M.
, and
Zhao
,
Y. Z.
,
2016
, “
Investigation of Channel Vortices in Francis Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
082003
.10.1088/1755-1315/49/8/082003
14.
Zhou
,
L.
,
Liu
,
M.
,
Wang
,
Z.
,
Liu
,
D.
, and
Zhao
,
Y.
,
2017
, “
Numerical Simulation of the Blade Channel Vortices in a Francis Turbine Runner
,”
Eng. Comput.
,
34
(
2
), pp.
364
376
.10.1108/EC-10-2015-0302
15.
Xu
,
L.
,
Jin
,
X.
,
Li
,
Z.
,
Deng
,
W.
,
Liu
,
D.
, and
Liu
,
X.
,
2021
, “
Particle Image Velocimetry Test for the Inter-Blade Vortex in a Francis Turbine
,”
Processes
,
9
(
11
), p.
1968
.10.3390/pr9111968
16.
Rezavand Hesari
,
A.
,
Munoz
,
A.
,
Coulaud
,
M.
,
Maciel
,
Y.
, and
Houde
,
S.
,
2023
, “
Methodology for Stereoscopic PIV Measurements at the Inlet of a Francis Turbine Runner
,”
Exp. Fluids
,
64
(
11
), p.
183
.10.1007/s00348-023-03728-2
17.
Sciacchitano
,
A.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2013
, “
PIV Uncertainty Quantification by Image Matching
,”
Meas. Sci. Technol.
,
24
(
4
), p.
045302
.10.1088/0957-0233/24/4/045302
18.
Bourgeois
,
J.
, and
Houde
,
S.
,
2023
, “
Investigations of Spoilers to Mitigate Columnar Vortices in Propeller Turbines at Speed-No-Load Based on Steady and Unsteady Flow Simulations
,”
ASME J. Fluids Eng.
,
145
(
11
), p.
111202
.10.1115/1.4062645
19.
Maciel
,
Y.
,
Robitaille
,
M.
, and
Rahgozar
,
S.
,
2012
, “
A Method for Characterizing Cross-Sections of Vortices in Turbulent Flows
,”
Int. J. Heat Fluid Flow
,
37
, pp.
177
188
.10.1016/j.ijheatfluidflow.2012.06.005
20.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.10.1017/S0022112005004726
You do not currently have access to this content.