Abstract

Efforts are made to elucidate a comprehensive analysis of entrainment dynamics triggered by a couple of unequal rotational fluxes within a viscous pool. Cylindrical rollers are employed to establish the rotational field. The top drum is equally submerged in both phases and also it provides a constant rotational inertia. Concomitantly, the bottom roller is completely submerged in the viscous bath, and it provides an unequal rotational strength in reference to top roller. The average rotational strength of both rollers is measured using average Capillary number (Caavg). The entrainment phenomenon is strongly influenced by both Caavg and gap between the rollers (W/D). Characterization of entrained filament is elucidated by predicting the horizontal distance (L*), radial distance (r*), temporal vertical displacement (Y*), maximum vertical displacement (Ymax*), width (H*), and location of V-shaped diversion (Øs*). Characterization of liquid tip is performed by measuring the travel rate (γ*) along periphery of drum from receding to advancing junction. Air mass ejection from filament tip is analyzed by estimating the first bubble ejection time (t1st*), volume of accumulated of ejected gaseous masses (v*), and ejection frequency (f). Furthermore, the effect of gravitational pull (specified by Archimedes number, Ar) and viscous drag (measured by Morton number, Mo) on the pattern of entrained air filament is described. Lastly, an analytical framework is established to determine the width of the V-junction by balancing the important influencing forces, which are strongly affecting the filament. Analytical observations show a satisfactory agreement with numerical findings.

References

1.
Peixinho
,
J.
,
Mirbod
,
P.
, and
Morris
,
J. F.
,
2012
, “
Free Surface Flow Between Two Horizontal Concentric Cylinders
,”
Eur. Phys. J. E
,
35
(
3
), pp.
1
9
.10.1140/epje/i2012-12019-8
2.
Sharma
,
Y.
,
Kumar
,
P.
,
Rana
,
B. K.
, and
Das
,
A. K.
,
2016
, “
Rotary Entrainment in Stratified Gas-Liquid Layers: An Experimental Study
,”
Proc. Indian Natl. Sci. Acad.
,
82
(
4
), pp.
1293
1301
.10.16943/ptinsa/2016/v82/48401
3.
Guo
,
C.
,
Ji
,
M.
,
Han
,
Y.
,
Liu
,
T.
,
Wu
,
Y.
, and
Kuai
,
Y.
,
2023
, “
Numerical Simulation of the Horizontal Rotating Cylinder and the Air Entrainment Near the Free Surface
,”
Phys. Fluids
,
35
(
9
), p.
092115
.10.1063/5.0167342
4.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2022
, “
Entrainment in Multifluid Systems, and Rotation Induced Occurrences
,”
Eur. J. Mech. B/Fluids
,
96
, pp.
156
172
.10.1016/j.euromechflu.2022.08.001
5.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2024
, “
Interfacial Dynamics Around a Swirling Roller in the Presence of Oppositely Imposed Horizontal Crossflows
,”
ASME J. Fluids Eng.
,
146
(
1
), p.
011303
.10.1115/1.4063259
6.
Singh
,
S.
, and
Musculus
,
M. P.
,
2010
, “
Numerical Modeling and Analysis of Entrainment in Turbulent Jets After the End of Injection
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081203
.10.1115/1.4002184
7.
Chinello
,
G.
,
Ayati
,
A. A.
,
McGlinchey
,
D.
,
Ooms
,
G.
, and
Henkes
,
R.
,
2019
, “
Comparison of Computational Fluid Dynamics Simulations and Experiments for Stratified Air-Water Flows in Pipes
,”
ASME J. Fluids Eng.
,
141
(
5
), p.
051302
.10.1115/1.4041667
8.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Asymmetric Bursting of Taylor Bubble in Inclined Tubes
,”
Phys. Fluids
,
28
(
8
), p.
082106
.10.1063/1.4961040
9.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Towards the Understanding of Bubble-Bubble Interaction Upon Formation at Submerged Orifices: A Numerical Approach
,”
Chem. Eng. Sci.
,
161
, pp.
316
328
.10.1016/j.ces.2016.12.049
10.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Collapse of a Taylor Bubble at a Free Surface
,”
Multiphase Sci. Technol.
,
28
(
2
), pp.
173
191
.10.1615/MultScienTechn.2017019092
11.
Bertola
,
N.
,
Wang
,
H.
, and
Chanson
,
H.
,
2018
, “
Air Bubble Entrainment, Breakup, and Interplay in Vertical Plunging Jets
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091301
.10.1115/1.4039715
12.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Study of Interaction Pattern Between Bubbles at Three Inline Orifices in a Submerged Pool
,”
Chem. Eng. Sci.
,
168
, pp.
41
54
.10.1016/j.ces.2017.04.044
13.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2015
, “
Mechanism of Bursting Taylor Bubbles at Free Surfaces
,”
Langmuir
,
31
(
36
), pp.
9870
9881
.10.1021/acs.langmuir.5b02643
14.
Tharmalingam
,
S.
, and
Wilkinson
,
W. L.
,
1978
, “
The Coating of Newtonian Liquids Onto a Rotating Roll
,”
Chem. Eng. Sci.
,
33
(
11
), pp.
1481
1487
.10.1016/0009-2509(78)85197-5
15.
Tharmalingam
,
S.
, and
Wilkinson
,
W. L.
,
1978
, “
The Coating of Newtonian Liquids Onto a Roll Rotating at Low Speeds
,”
Polym. Eng. Sci.
,
18
(
15
), pp.
1155
1159
.10.1002/pen.760181506
16.
Campanella
,
O. H.
, and
Cerro
,
R. L.
,
1984
, “
Viscous Flow on the Outside of a Horizontal Rotating Cylinder: The Roll Coating Regime With a Single Fluid
,”
Chem. Eng. Sci.
,
39
(
10
), pp.
1443
1449
.10.1016/0009-2509(84)80002-0
17.
Joseph
,
D. D.
,
Nguyen
,
K.
, and
Beavers
,
G. S.
,
1984
, “
Non-Uniqueness and Stability of the Configuration of Flow of Immiscible Fluids With Different Viscosities
,”
J. Fluid Mech.
,
141
, pp.
319
345
.10.1017/S0022112084000872
18.
Joseph
,
D. D.
,
Nelson
,
J.
,
Renardy
,
M.
, and
Renardy
,
Y.
,
1991
, “
Two-Dimensional Cusped Interfaces
,”
J. Fluid Mech.
,
223
(
−1
), pp.
383
409
.10.1017/S0022112091001477
19.
Jeong
,
J. T.
, and
Moffatt
,
H. K.
,
1992
, “
Free-Surface Cusps Associated With Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
241
, pp.
1
22
.10.1017/S0022112092001927
20.
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2017
, “
Air Entrainment Driven by a Converging Rotational Field in a Viscous Liquid
,”
Phys. Fluids
,
29
(
10
), p.
102104
.10.1063/1.4991763
21.
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2017
, “
Bending and Growth of Entrained Air Filament Under Converging and Asymmetric Rotational Fields
,”
Phys. Fluids
,
29
(
2
), p.
022101
.10.1063/1.4975211
22.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Behavior of Gas Entrainment Inside Viscous Pool Due to Combined Influence of Symmetric Rotational Field and Freestream Flow of Air
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021402
.10.1115/1.4055881
23.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Gaseous Entrainment Dynamics in a Viscous Pool Due to Combined Influence of Asymmetric Rotational Field and Crossflow of Air
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021401
.10.1115/1.4055802
24.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Characterization of Air Entrainment Using a Pair of Vertically Aligned Revolving Rollers
,”
Ind. Eng. Chem. Res.
,
62
(
2
), pp.
998
1015
.10.1021/acs.iecr.2c04008
25.
Lorenceau
,
E.
,
Restagno
,
F.
, and
Quéré
,
D.
,
2003
, “
Fracture of a Viscous Liquid
,”
Phys. Rev. Lett.
,
90
(
18
), p.
184501
.10.1103/PhysRevLett.90.184501
26.
Yu
,
S. H.
,
Lee
,
K. S.
, and
Yook
,
S. J.
,
2009
, “
Film Flow Around a Fast Rotating Roller
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
796
803
.10.1016/j.ijheatfluidflow.2009.01.013
27.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Numerical Study of Air Entrainment and Liquid Film Wrapping Around a Rotating Cylinder
,”
Ind. Eng. Chem. Res.
,
55
(
46
), pp.
11950
11960
.10.1021/acs.iecr.6b03477
28.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2023
, “
Influence of the Immersion Ratio of a Revolving Roller on the Film Coating and Entrainment Dynamics
,”
Ind. Eng. Chem. Res.
,
62
(
15
), pp.
6285
6300
.10.1021/acs.iecr.3c00095
29.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Rotational Flux Influenced Cusp Entrainment in a Viscous Pool
,”
Phys. Fluids
,
34
(
10
), p.
102103
.10.1063/5.0118237
30.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2021
, “
Competition of Roller Rotation and Horizontal Crossflow to Control the Free Surface Cusp-Induced Air Entrainment
,”
Phys. Fluids
,
33
(
11
), p.
112114
.10.1063/5.0069984
31.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Numerical Simulation and Analytical Prediction on the Development of Entrained Air Filament Caused by the Combined Effect of Rotational Field and Free Stream Flow
,”
Ind. Eng. Chem. Res.
,
61
(
26
), pp.
9456
9473
.10.1021/acs.iecr.2c00684
32.
Hashid
,
M.
, and
Eldho
,
T. I.
,
2023
, “
Numerical Simulation of Air-Core Surface Vortex at Critical Submergence for Dual Horizontal Intakes
,”
ASME J. Fluids Eng.
,
145
(
7
), p.
071203
.10.1115/1.4056997
33.
Yu
,
X.
,
Huang
,
C.
,
Du
,
T.
,
Liao
,
L.
,
Wu
,
X.
,
Zheng
,
Z.
, and
Wang
,
Y.
,
2014
, “
Study of Characteristics of Cloud Cavity Around Axisymmetric Projectile by Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051303
.10.1115/1.4026583
34.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2022
, “
Numerical Observation and Analytical Formulation of Droplet Impact and Spreading Around the Thin Vertical Cylinder
,”
Phys. Fluids
,
34
(
4
), p.
042114
.10.1063/5.0086811
35.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2022
, “
Computational and Analytical Investigation of Droplet Impingement and Spreading Dynamics Around the Right Circular Cone
,”
Langmuir
,
38
(
48
), pp.
14891
14908
.10.1021/acs.langmuir.2c02567
36.
Rana
,
B. K.
,
Singh
,
B.
, and
Senapati
,
J. R.
,
2021
, “
Thermofluid Characteristics on Natural and Mixed Convection Heat Transfer From a Vertical Rotating Hollow Cylinder Immersed in Air: A Numerical Exercise
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
2
), p.
022601
.10.1115/1.4048830
37.
Yu
,
J.
,
Luo
,
X.
,
Wang
,
B.
,
Wu
,
S.
, and
Wang
,
J.
,
2021
, “
Analysis of Gas–Liquid–Solid Three-Phase Flows in Hydrocyclones Through a Coupled Method of Volume of Fluid and Discrete Element Model
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111402
.10.1115/1.4051219
38.
Rana
,
B. K.
,
2023
, “
Thermofluidic Analysis Around a Heated Hollow Spherical Ring Immersed in Air
,”
Numer. Heat Transfer, Part A
, pp.
1
22
.10.1080/10407782.2023.2265554
39.
Rajendran
,
S.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2022
, “
New Property Averaging Scheme for Volume of Fluid Method for Two-Phase Flows With Large Viscosity Ratios
,”
ASME J. Fluids Eng.
,
144
(
6
), p.
061101
.10.1115/1.4053548
40.
Shah
,
A.
, and
Rana
,
B. K.
,
2024
, “
Effect of Adiabatic Ground on Thermofluidic Behavior and Cooling Time Analysis From a Hollow Tube
,”
Numer. Heat Transfer, Part B
, pp.
1
22
.10.1080/10407790.2023.2299681
41.
Vakacharla
,
B. K.
, and
Rana
,
B. K.
,
2022
, “
Free Convection Heat Transfer From a Spherical Shaped Open Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
9
), p.
092601
.10.1115/1.4054773
42.
Shah
,
A.
, and
Rana
,
B. K.
,
2023
, “
Numerical Investigation of Free Convection Around a Pair of Vertically-Aligned Isothermally-Heated Vertical Hollow Cylinders
,”
Numer. Heat Transfer, Part A
, pp.
1
24
.10.1080/10407782.2023.2236792
43.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2024
, “
Characterization of Droplet Impact Dynamics Onto a Stationary Solid Torus
,”
Phys. Fluids
,
36
(
2
), p.
022117
.10.1063/5.0186745
44.
Jin
,
Q.
,
Hudson
,
D.
, and
Price
,
W. G.
,
2022
, “
A Combined Volume of Fluid and Immersed Boundary Method for Modeling of Two-Phase Flows With High Density Ratio
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031402
.10.1115/1.4052242
45.
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2024
, “
Understanding of Head-on Coalescence of Binary Drops Onto a Cylindrical Target
,”
Chem. Eng. Sci.
,
290
, p.
119886
.10.1016/j.ces.2024.119886
46.
Rana
,
B. K.
,
2023
, “
Numerical Investigation on Free Convection From an Isothermally Heated Hollow Inclined Cylinder Suspended in Air
,”
Numer. Heat Transfer, Part A
,
83
(
11
), pp.
1195
1219
.10.1080/10407782.2022.2102398
47.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2023
, “
Natural Convection From an Isothermally Heated Hollow Vertical Cylinder Submerged in Quiescent Power-Law Fluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021003
.10.1115/1.4055824
48.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2021
, “
Entropy Generation Analysis and Cooling Time Estimation for a Rotating Vertical Hollow Tube in the Air Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
4
), p.
042101
.10.1115/1.4049839
49.
Dhabekar
,
P. P.
,
Sahoo
,
P. C.
,
Senapati
,
J. R.
, and
Rana
,
B. K.
,
2023
, “
Towards Understanding of Spreading and Detachment During Droplet Impact Onto a Hemispherical Surface
,”
Eur. J. Mech. B/Fluids
,
100
, pp.
52
66
.10.1016/j.euromechflu.2023.03.001
50.
Rana
,
B. K.
,
2023
, “
Mixed Convection Heat Transfer From Swirling Open Spherical Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
6
), p.
062601
.10.1115/1.4056372
51.
Rana
,
B. K.
,
2022
, “
Conjugate Steady Natural Convection Analysis Around Thick Tapered Vertical Pipe Suspended in the Air
,”
Sādhanā
,
47
(
1
), p.
10
.10.1007/s12046-021-01780-4
52.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.10.1016/S0021-9991(03)00298-5
53.
Popinet
,
S.
,
2009
, “
An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows
,”
J. Comput. Phys.
,
228
(
16
), pp.
5838
5866
.10.1016/j.jcp.2009.04.042
54.
Chorin
,
A. J.
,
1969
, “
On the Convergence of Discrete Approximations to the Navier-Stokes Equations
,”
Math. Comput.
,
23
(
106
), pp.
341
353
.10.1090/S0025-5718-1969-0242393-5
55.
Bell
,
J. B.
,
Colella
,
P.
, and
Glaz
,
H. M.
,
1989
, “
A Second-Order Projection Method for the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
85
(
2
), pp.
257
283
.10.1016/0021-9991(89)90151-4
You do not currently have access to this content.