Abstract

This research examines the efficacy of employing lateral multijets to decrease thermal effects on the blunt body featuring a multirow disk (MRD) spike, which holds significant importance in the design of high-speed vehicles. The main novelty of the model is the combination of the spike with multiple row disk along with the injection of the coolant jet. The study thoroughly analyzes the cooling mechanism of lateral jets and assesses the influence of coolant jet positioning on heat reduction of the nose and mechanical spike. This study employed Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model for the simulation of the high-speed flow around the nose cone with multirow disk spike. A comparison is made between the effectiveness of CO2 and helium jets, both as single and multiple injectors. The results display that a single CO2 jet released near the tip of the spike is the most effective, and placing the lateral coolant injector away from the main body effectively manages aerodynamic heating. Additionally, the research compares the heat load reduction achieved by triple lateral jets and concludes that the CO2 jet is the most efficient option for thermal protection of the main body. The role of the spike in reduction of the heat load is reduced 20% when CO2 jet is released from all lateral injectors.

References

1.
Mostafa
,
B. G.
,
2022
,
Aerodynamic Heating in Supersonic and Hypersonic Flows: Advanced Techniques for Drag and Aero-Heating Reduction
,
Elsevier
, Oxford, UK, pp.
1
246
.
2.
Pish
,
F.
,
Manh
,
T. D.
,
Gerdroodbary
,
M. B.
,
Nam
,
N. D.
,
Moradi
,
R.
, and
Babazadeh
,
H.
,
2020
, “
Computational Study of the Cavity Flow Over Sharp Nose Cone in Supersonic Flow
,”
Int. J. Mod. Phys. C
,
31
(
6
), p.
2050079
.10.1142/S0129183120500795
3.
Tan
,
J.
,
Zhang
,
K.
,
Li
,
B.
, and
Wu
,
A.
,
2023
, “
Event-Triggered Sliding Mode Control for Spacecraft Reorientation With Multiple Attitude Constraints
,”
IEEE Trans. Aerosp. Electron. Syst.
,
59
(
5
), pp.
1
14
.10.1109/TAES.2023.3270391
4.
Wang
,
Z.
,
Gao
,
D.
,
Deng
,
K.
,
Lu
,
Y.
,
Ma
,
S.
, and
Zhao
,
J.
,
2024
, “
Robot Base Position and Spacecraft Cabin Angle Optimization Via Homogeneous Stiffness Domain Index With Nonlinear Stiffness Characteristics
,”
Rob. Comput.-Integr. Manuf.
,
90
, p.
102793
.10.1016/j.rcim.2024.102793
5.
Kong
,
D.
,
Chen
,
W.
,
Niu
,
X.
,
Liu
,
C.
,
Isaev
,
S. A.
, and
Guo
,
T.
,
2024
, “
A Comparative Study of Internal Heat Transfer Enhancement of Impingement/Effusion Cooling Roughened by Solid Rib and Slit Rib
,”
Phys. Fluids
,
36
(
1
), p.
015106
.10.1063/5.0179254
6.
Zeng
,
S.
,
Liu
,
J.
, and
Ma
,
C.
,
2024
, “
Topology Optimization in Cooling Moving Heat Sources for Enhanced Precision of Machine Tool Feed Drive Systems
,”
Int. J. Therm. Sci.
,
202
, p.
109065
.10.1016/j.ijthermalsci.2024.109065
7.
Gerdroodbary
,
M. B.
, and
Hosseinalipour
,
S. M.
,
2010
, “
Numerical Simulation of Hypersonic Flow Over Highly Blunted Cones With Spike
,”
Acta Astronaut.
,
67
(
1–2
), pp.
180
193
.10.1016/j.actaastro.2010.01.026
8.
Hou
,
Y.
,
Cheng
,
M.
,
Sheng
,
Z.
, and
Wang
,
J.
,
2024
, “
Unsteady Conjugate Heat Transfer Simulation of Wall Heat Loads for Rotating Detonation Combustor
,”
Int. J. Heat Mass Transfer
,
221
, p.
125081
.10.1016/j.ijheatmasstransfer.2023.125081
9.
Alizadeh
,
A.
,
Jasim
,
D. J.
,
Sohrabi
,
N.
,
Ahmed
,
M.
,
Ameer
,
S. A.
,
Ibrahim
,
S. M.
,
Dabis
,
H. K.
,
Hussein
,
A. A.
, and
Sultan
,
A. J.
,
2024
, “
Using Shock Generator for the Fuel Mixing of the Extruded Single 4-Lobe Nozzle at Supersonic Combustion Chamber
,”
Sci. Rep.
,
14
(
1
), p.
6405
.10.1038/s41598-024-57103-0
10.
Gerdroodbary
,
M. B.
,
Bishehsari
,
S.
,
Hosseinalipour
,
S. M.
, and
Sedighi
,
K.
,
2012
, “
Transient Analysis of Counterflowing Jet Over Highly Blunt Cone in Hypersonic Flow
,”
Acta Astronaut.
,
73
, pp.
38
48
.10.1016/j.actaastro.2011.12.011
11.
Pish
,
F.
,
Hassanvand
,
A.
,
Barzegar Gerdroodbary
,
M.
, and
Noori
,
S.
,
2019
, “
Viscous Equilibrium Analysis of Heat Transfer on Blunted Cone at Hypersonic Flow
,”
Case Stud. Therm. Eng.
,
14
, p.
100464
.10.1016/j.csite.2019.100464
12.
Barzegar Gerdroodbary
,
M.
,
2014
, “
Numerical Analysis on Cooling Performance of Counterflowing Jet Over Aerodisked Blunt Body
,”
Shock Waves
,
24
(
5
), pp.
537
543
.10.1007/s00193-014-0517-4
13.
Dong
,
Y.
,
Xu
,
B.
,
Liao
,
T.
,
Yin
,
C.
, and
Tan
,
Z.
,
2023
, “
Application of Local-Feature-Based 3-D Point Cloud Stitching Method of Low-Overlap Point Cloud to Aero-Engine Blade Measurement
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
13
.10.1109/TIM.2023.3309384
14.
Feszty
,
D.
,
Badcock
,
K. J.
, and
Richards
,
B. E.
,
2004
, “
Driving Mechanisms of High-Speed Unsteady Spiked Body Flows, Part 2: Oscillation Mode
,”
AIAA J.
,
42
(
1
), pp.
107
113
.10.2514/1.9035
15.
Chen
,
D.
,
Serbin
,
S.
, and
Burunsuz
,
K.
,
2024
, “
Features of a Gas Turbine Combustion Chamber in Operation With Gaseous Ammonia
,”
Fuel
,
372
, p.
132149
.10.1016/j.fuel.2024.132149
16.
Zhou
,
Y.
,
Song
,
Y.
,
Zhao
,
S.
,
Li
,
X.
,
Shao
,
L.
,
Yan
,
H.
,
Xu
,
Z.
, and
Ding
,
S.
,
2024
, “
A Comprehensive Aerodynamic-Thermal-Mechanical Design Method for Fast Response Turbocharger Applied in Aviation Piston Engines
,”
Propul. Power Res.
,
13
(
2
), pp.
145
165
.10.1016/j.jppr.2024.04.001
17.
Barzegar Gerdroodbary
,
M.
,
2020
,
Scramjets: Fuel Mixing and Injection Systems
,
Elsevier
,
Oxford, UK
, pp.
1
220
.
18.
Jiang
,
Y.
,
Hajivand
,
M.
,
Sadeghi
,
H.
,
Barzegar Gerdroodbary
,
M.
, and
Li
,
Z.
,
2021
, “
Influence of Trapezoidal Lobe Strut on Fuel Mixing and Combustion in Supersonic Combustion Chamber
,”
Aerosp. Sci. Technol.
,
116
, p.
106841
.10.1016/j.ast.2021.106841
19.
Hassanvand
,
A.
,
Barzegar Gerdroodbary
,
M.
, and
Abazari
,
A. M.
,
2021
, “
Injection of Hydrogen Sonic Multi-Jet on Inclined Surface at Supersonic Flow
,”
Int. J. Mod. Phys. C
,
32
(
3
), p.
2150043
.10.1142/S0129183121500431
20.
Liu
,
F.
,
Zhao
,
X.
,
Zhu
,
Z.
,
Zhai
,
Z.
, and
Liu
,
Y.
,
2023
, “
Dual-Microphone Active Noise Cancellation Paved With Doppler Assimilation for TADS
,”
Mech. Syst. Signal Process.
,
184
, p.
109727
.10.1016/j.ymssp.2022.109727
21.
Song
,
X.
,
Fan
,
Z.
,
Lu
,
S.
,
Yan
,
Y.
, and
Yue
,
B.
,
2024
, “
Predefined-Time Sliding Mode Attitude Control for Liquid-Filled Spacecraft With Large Amplitude Sloshing
,”
Eur. J. Control
,
77
, p.
100970
.10.1016/j.ejcon.2024.100970
22.
Chen
,
X.
,
Zhong
,
S.
,
Liu
,
T.
,
Ozer
,
O.
, and
Gao
,
G.
,
2024
, “
Manipulation of the Flow Induced by Afterbody Vortices Using Sweeping Jets
,”
Phys. Fluids
,
36
(
3
), p.
035147
.10.1063/5.0196427
23.
Hassanvand
,
A.
,
Saei Moghaddam
,
M.
,
Barzegar Gerdroodbary
,
M.
, and
Amini
,
Y.
,
2021
, “
Analytical Study of Heat and Mass Transfer in Axisymmetric Unsteady Flow by ADM
,”
J. Comput. Appl. Res. Mech. Eng. (JCARME)
,
11
(
1
), pp.
151
163
.10.22061/jcarme.2019.3456.1399
24.
Cao
,
X.
,
Zhou
,
J.
,
Zhou
,
X.
,
Wang
,
Z.
,
Wang
,
Z.
, and
Sheng
,
Y.
,
2024
, “
Experimental Research on the Synergy Effect of Resistance/Inhibition on the Syngas Explosion
,”
Fuel
,
363
, p.
130995
.10.1016/j.fuel.2024.130995
25.
Fan
,
R.
,
Pan
,
Y.
,
Xiao
,
Y.
, and
Wang
,
Z.
,
2024
, “
Investigation on Flame Propagation Characteristics and Critical Ignition Criteria of Hydrogen Jet
,”
Int. J. Hydrogen Energy
,
57
, pp.
1437
1445
.10.1016/j.ijhydene.2024.01.126
26.
Abdollahi
,
S. A.
,
Rajabikhorasani
,
G.
, and
Alizadeh
,
A.
,
2023
, “
Influence of Extruded Injector Nozzle on Fuel Mixing and Mass Diffusion of Multi Fuel Jets in the Supersonic Cross Flow: Computational Study
,”
Sci. Rep.
,
13
(
1
), p.
12095
.10.1038/s41598-023-39306-z
27.
Zhang
,
Y.
,
Barzegar Gerdroodbary
,
M.
,
Hosseini
,
S.
,
Abazari
,
A. M.
, and
Li
,
Z.
,
2021
, “
Effect of Hybrid Coaxial Air and Hydrogen Jets on Fuel Mixing at Supersonic Crossflow
,”
Int. J. Hydrogen Energy
,
46
(
29
), pp.
16048
16062
.10.1016/j.ijhydene.2021.02.070
28.
Mei
,
Q.
,
Liu
,
L.
,
Yang
,
W.
, and
Tang
,
Y.
,
2024
, “
Combustion Model Development of Future DI Engines for Carbon Emission Reduction
,”
Energy Convers. Manage.
,
311
, p.
118528
.10.1016/j.enconman.2024.118528
29.
Mei
,
Q.
,
Liu
,
L.
, and
Abu Mansor
,
M. R.
,
2024
, “
Investigation on Spray Combustion Modeling for Performance Analysis of Future Low- and Zero-Carbon DI Engine
,”
Energy
,
302
, p.
131906
.10.1016/j.energy.2024.131906
30.
Shang
,
S.
,
Sun
,
G.
,
Yu
,
Z.
,
Alizadeh
,
A. A.
,
Ali
,
M. A.
, and
Shamsborhan
,
M.
,
2023
, “
The Impact of Inner Air Jet on Fuel Mixing Mechanism and Mass Diffusion of Single Annular Extruded Nozzle at Supersonic Combustion Chamber
,”
Int. Commun. Heat Mass Transfer
,
146
, p.
106869
.10.1016/j.icheatmasstransfer.2023.106869
31.
Li
,
Y.
,
Zhu
,
G.
,
Chao
,
Y.
,
Chen
,
L.
, and
Alizadeh
,
A. A.
,
2023
, “
Comparison of the Different Shapes of Extruded Annular Nozzle on the Fuel Mixing of the Hydrogen Jet at Supersonic Combustion Chamber
,”
Energy
,
281
, p.
128142
.10.1016/j.energy.2023.128142
32.
Ma
,
L.
,
Liu
,
X.
,
Liu
,
H.
,
Alizadeh
,
A. A.
, and
Shamsborhan
,
M.
,
2023
, “
The Influence of the Struts on Mass Diffusion System of Lateral Hydrogen Micro Jet in Combustor of Scramjet Engine: Numerical Study
,”
Energy
,
279
, p.
128119
.10.1016/j.energy.2023.128119
33.
Shi
,
X.
,
Song
,
D.
,
Tian
,
H.
,
Alizadeh
,
A. A.
,
Ali
,
M. A.
, and
Shamsborhan
,
M.
,
2023
, “
Influence of Coaxial Fuel–Air Jets on Mixing Performance of Extruded Nozzle at Supersonic Combustion Chamber: Numerical Study
,”
Phys. Fluids
,
35
(
5
), p.
056110
.10.1063/5.0149165
34.
Shi
,
Y.
,
Cheng
,
Q.
,
Alizadeh
,
A. A.
,
Yan
,
H.
,
Choubey
,
G.
,
Fallah
,
K.
, and
Shamsborhan
,
M.
,
2023
, “
Influence of Lateral Single Jets for Thermal Protection of Reentry Nose Cone With Multi-Row Disk Spike at Hypersonic Flow: Computational Study
,”
Sci. Rep.
,
13
(
1
), p.
6549
.10.1038/s41598-023-33739-2
35.
Pish
,
F.
,
Moradi
,
R.
,
Edalatpour
,
A.
, and
Barzegar Gerdroodbary
,
M.
,
2019
, “
The Effect of Coolant Injection From the Tip of Spike on Aerodynamic Heating of Nose Cone at Supersonic Flow
,”
Acta Astronaut.
,
154
, pp.
52
60
.10.1016/j.actaastro.2018.10.021
36.
Qin
,
Q.
, and
Xu
,
J.
,
2019
, “
Numerical Evaluation of Aerodome and Cooling Jet for Aeroheating Reduction
,”
Aerosp. Sci. Technol.
,
86
, pp.
520
533
.10.1016/j.ast.2019.01.046
37.
Moradi
,
R.
,
Mosavat
,
M.
,
Barzegar Gerdroodbary
,
M.
,
Abdollahi
,
A.
, and
Amini
,
Y.
,
2018
, “
The Influence of Coolant Jet Direction on Heat Reduction on the Nose Cone With Aerodome at Supersonic Flow
,”
Acta Astronaut.
,
151
, pp.
487
493
.10.1016/j.actaastro.2018.06.026
38.
Qin
,
Q.
,
Xu
,
J.
, and
Guo
,
S.
,
2017
, “
Fluid–Thermal Analysis of Aerodynamic Heating Over Spiked Blunt Body Configurations
,”
Acta Astronaut.
,
132
, pp.
230
242
.10.1016/j.actaastro.2016.12.037
39.
Zhu
,
L.
,
Li
,
Y.
,
Chen
,
X.
,
Gong
,
L.
,
Xu
,
J.
, and
Feng
,
Z.
,
2019
, “
Novel Combinational Aerodisk and Lateral Jet Concept for Drag and Heat Reduction in Hypersonic Flows
,”
J. Aerosp. Eng.
,
32
(
1
), p.
04018133
.10.1061/(ASCE)AS.1943-5525.0000966
40.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
41.
Iranmanesh
,
R.
,
Alizadeh
,
A.
,
Faraji
,
M.
, and
Choubey
,
G.
,
2023
, “
Numerical Investigation of Compressible Flow Around Nose Cone With Multi-Row Disk and Multi Coolant Jets
,”
Sci. Rep.
,
13
(
1
), p.
787
.10.1038/s41598-023-28127-9
You do not currently have access to this content.