Abstract

Centrifugal pumps, consisting of an inducer and impeller, are used in various industries such as marine, aerospace, and nuclear. Typically, inducers and impellers in centrifugal pumps are fixed on the same shaft, having the same rotation direction and speed. Thanks to the use of independent rotation technology for the inducer and impeller, each can be rotated simultaneously at different speeds and in different directions. This article investigates the impact of varying the speed ratio between the inducer and impeller on the cavitation performance of centrifugal pumps equipped with an inducer as an innovative concept of allowing the rotors to rotate independently. Two inducers with identical geometry with opposite rotation directions are used to study the impact of speed in both corotation and counter-rotation modes. The cavitation performance of each mode has been analyzed for three different flow rates at varying inducer speeds. The development and structure of different types of cavitation occurring both in the inducer and in the space between the inducer and the impeller have been analyzed using a high speed camera. The findings indicate that the inducer in counter-rotation mode demonstrates enhanced cavitation performance. Increasing the speed ratio of the inducer relative to the impeller in this mode significantly improves the pump cavitation performance at different flow rates, while in the corotation mode, increasing the speed results in the cavitation performance drop.

References

1.
Mousmoulis
,
G.
,
Anagnostopoulos
,
J.
, and
Papantonis
,
D.
,
2019
, “
A Review of Experimental Detection Methods of Cavitation in Centrifugal Pumps and Inducers
,”
Int. J. Fluid Mach. Syst.
,
12
(
1
), pp.
71
88
.10.5293/IJFMS.2019.12.1.071
2.
L.
d'Agostino
and
M. V.
Salvetti
, eds.,
2017
,
Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines: Turbopump and Inducer Cavitation, Experiments and Design
,
Springer International Publishing
,
Cham
, Vol.
575
.
3.
Huzel, D. K., and Huang, D. H., 1971 “Design of Liquid Propellant Rocket Engines,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA SP-125
.https://ntrs.nasa.gov/api/citations/19710019929/downloads/19710019929.pdf
4.
Karakas
,
E. S.
,
Watanabe
,
H.
,
Aureli
,
M.
, and
Evrensel
,
C. A.
,
2020
, “
Cavitation Performance of Constant and Variable Pitch Helical Inducers for Centrifugal Pumps: Effect of Inducer Tip Clearance
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021211
.10.1115/1.4044629
5.
Koishikawa
,
A.
,
Takeuchi
,
Y.
, and
Ohta
,
S.
,
1992
,
Development of Advanced Inducer Pump for LMFBR
,
Atomic Energy Society of Japan
,
Japan
.
6.
Semenov
,
Y. A.
,
Fujii
,
A.
, and
Tsujimoto
,
Y.
,
2004
, “
Rotating Choke in Cavitating Turbopump Inducer
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
87
93
.10.1115/1.1637926
7.
Wang
,
L.
,
Tang
,
F.
,
Liu
,
H.
,
Zhang
,
X.
,
Sun
,
Z.
, and
Wang
,
F.
,
2023
, “
Investigation of Cavitation and Flow Characteristics of Tip Clearance of Bidirectional Axial Flow Pump With Different Clearances
,”
Ocean Eng.
,
288
, p.
115960
.10.1016/j.oceaneng.2023.115960
8.
Han, Y., and Tan, L., 2023, “Spatial-Temporal Evolution of Tip Leakage Cavitation With Double-Hump in a Mixed Flow Pump With Tip Clearance,”
Phys. Fluids
, 35(4), p.
045152
.10.1063/5.0145676
9.
Li
,
W.
,
Liu
,
M.
,
Ji
,
L.
,
Li
,
S.
,
Song
,
R.
,
Wang
,
C.
,
Cao
,
W.
, and
Agarwal
,
R. K.
,
2023
, “
Study on the Trajectory of Tip Leakage Vortex and Energy Characteristics of Mixed-Flow Pump Under Cavitation Conditions
,”
Ocean Eng.
,
267
, p.
113225
.10.1016/j.oceaneng.2022.113225
10.
Lv
,
Y.
,
Li
,
S.
,
Wang
,
Z.
, and
Zhou
,
L.
,
2023
, “
Study on Pump Mode Cavitation Characteristic of Variable Speed Pump Turbine
,”
Phys. Fluids
,
35
(
6
), p.
065111
.10.1063/5.0154131
11.
Wu
,
R.
,
Liu
,
H.
,
Chen
,
W.
,
Ji
,
S.
,
Cao
,
L.
, and
Wu
,
D.
,
2024
, “
Experimental Investigation of Propeller Blade Back Cavitation Induced Pressure Pulses by Synchronous Observation
,”
Ocean Eng.
,
298
, p.
116971
.10.1016/j.oceaneng.2024.116971
12.
Jia
,
X.
,
Zhang
,
Y.
,
Lv
,
H.
, and
Zhu
,
Z.
,
2023
, “
Study on External Performance and Internal Flow Characteristics in a Centrifugal Pump Under Different Degrees of Cavitation
,”
Phys. Fluids
,
35
(
1
), p.
014104
.10.1063/5.0133377
13.
Lu
,
J.
,
Gong
,
Y.
,
Li
,
L.
,
Liu
,
X.
,
Kan
,
N.
, and
Zhang
,
F.
,
2023
, “
Research of the Vibration Induced by Cavitation in a Centrifugal Pump Under Part Load Condition
,”
Phys. Fluids
,
35
(
4
), p.
045144
.10.1063/5.0150364
14.
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
2003
, “
Experimental Analysis of an Axial Inducer Influence of the Shape of the Blade Leading Edge on the Performances in Cavitating Regime
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
293
301
.10.1115/1.1539872
15.
Zhao
,
G.
,
Liang
,
N.
,
Li
,
Q.
,
Cao
,
L.
, and
Wu
,
D.
,
2023
, “
Effect Mechanisms of Leading-Edge Tubercle on Blade Cavitation Control in a Waterjet Pump
,”
Ocean Eng.
,
290
, p.
116240
.10.1016/j.oceaneng.2023.116240
16.
Zhao
,
X.
,
Shen
,
X.
,
Geng
,
L.
,
Zhang
,
D.
, and
van Esch
,
B. P. M.
,
2022
, “
Effects of Cavitation on the Hydrodynamic Loading and Wake Vortex Evolution of a Pre-Swirl Pump-Jet Propulsor
,”
Ocean Eng.
,
266
, p.
113069
.10.1016/j.oceaneng.2022.113069
17.
Chen
,
Z.
,
Yang
,
S.
,
Li
,
X.
,
Li
,
Y.
, and
Li
,
L.
,
2023
, “
Investigation on Leakage Vortex Cavitation and Corresponding Enstrophy Characteristics in a Liquid Nitrogen Inducer
,”
Cryogenics
,
129
, p.
103606
.10.1016/j.cryogenics.2022.103606
18.
Yamamoto
,
K.
,
Ukai
,
S.
,
Fukuda
,
T.
,
Kawasaki
,
S.
, and
Negishi
,
H.
,
2023
, “
Establishment of Prediction Model for Cavitation Surge Frequency and Onset in an Inducer Considering Dynamic Characteristics of Cavitation Compliance and Mass Flow Gain Factor
,”
ASME J. Fluids Eng.
,
145
(
9
), p.
091501
.10.1115/1.4062377
19.
Fu
,
J.-F.
,
Liu
,
X.-W.
,
Yang
,
J.-J.
,
Yin
,
D.-W.
, and
Zhou
,
Z.-H.
,
2023
, “
Optimization of Cavitation Characteristics of Aviation Fuel Centrifugal Pump Inducer Based on Surrogate Model
,”
Struct. Multidiscip. Optim.
,
66
(
11
), p.
241
.10.1007/s00158-023-03685-8
20.
Son
,
Y.-J.
,
Kim
,
Y.-I.
,
Yang
,
H.-M.
,
Lee
,
K.-Y.
,
Suh
,
J.-W.
,
Yoon
,
J. Y.
, and
Choi
,
Y.-S.
,
2024
, “
Influence of Cavitation on Inducer and Return Channels of LNG Pump
,”
J. Mech. Sci. Technol.
,
38
(
1
), pp.
259
270
.10.1007/s12206-023-1222-y
21.
Mao
,
Y.
,
Liu
,
H.
,
Wang
,
Y.
,
Chen
,
J.
, and
Liu
,
F.
,
2023
, “
Experimental Study on Effects of Air Injection on Cavitation Pressure Pulsation and Vibration in a Centrifugal Pump With Inducer
,”
J. Hydrodyn.
,
35
(
6
), pp.
1168
1178
.10.1007/s42241-024-0086-7
22.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
23.
Hong
,
S.-S.
,
Kim
,
D.-J.
,
Kim
,
J.-S.
,
Choi
,
C.-H.
, and
Kim
,
J.
,
2013
, “
Study on Inducer and Impeller of a Centrifugal Pump for a Rocket Engine Turbopump
,”
Proc. Inst. Mech. Eng. Part C
,
227
(
2
), pp.
311
319
.10.1177/0954406212449939
24.
Guo
,
X.
,
Zhu
,
Z.
,
Shi
,
G.
, and
Huang
,
Y.
,
2017
, “
Effects of Rotational Speeds on the Performance of a Centrifugal Pump With a Variable-Pitch Inducer
,”
J. Hydrodyn.
,
29
(
5
), pp.
854
862
.10.1016/S1001-6058(16)60797-7
25.
Magne
,
T.
,
Paridaens
,
R.
,
Khelladi
,
S.
,
Bakir
,
F.
,
Tomov
,
P.
, and
Pora
,
L.
,
2020
, “
Experimental Study of the Hydraulic Performances of Two Three-Bladed Inducers in Water, Water With Dissolved CO2, and Jet Fuel
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111210
.10.1115/1.4048143
26.
Mansour
,
M.
,
Parikh
,
T.
,
Engel
,
S.
, and
Thévenin
,
D.
,
2020
, “
Numerical Investigations of Gas–Liquid Two-Phase Flow in a Pump Inducer
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021302
.10.1115/1.4044651
27.
Huan
,
Y.-Y.
,
Liu
,
Y.-Y.
,
Li
,
X.-J.
,
Zhu
,
Z.-C.
,
Qu
,
J.-T.
,
Zhe
,
L.
, and
Han
,
A.-D.
,
2021
, “
Experimental and Numerical Investigations of Cavitation Evolution in a High-Speed Centrifugal Pump With Inducer
,”
J. Hydrodyn.
,
33
(
1
), pp.
140
149
.10.1007/s42241-021-0006-z
28.
Zhang, H., Xia, B., Kong, F., Li, G., and Cao, P., 2022, “Experimental Investigation of Cavitation Characteristics for a High-Speed Inducer With a Great Flow Rate,”
Adv. Mech. Eng.
, 14(3), p.
168781322210875
.10.1177/16878132221087510
29.
Bi
,
C.
, and
Li
,
J.
,
2022
, “
Effect of Radial Height of Helical Static Blade on the Cavitation Performance of Inducer
,”
Appl. Sci.
,
12
(
8
), p.
3897
.10.3390/app12083897
30.
Aboelnil
,
A. H. I.
,
Hawash
,
S. A. F.
, and
Hashim
,
M. A.
,
2022
, “
Effect of Helical Inducer Usage on Both Performance and NPSH For A Centrifugal Pump
,”
Water Sci.
,
36
(
1
), pp.
41
47
.10.1080/23570008.2022.2043524
31.
Yan
,
L.
,
Gao
,
B.
,
Ni
,
D.
,
Zhang
,
N.
, and
Zhou
,
W.
,
2022
, “
Numerical Analysis on the Cavitation Characteristics of a Pump With an Inducer in Non-Uniform Inflow
,”
Ocean Eng.
,
256
, p.
111407
.10.1016/j.oceaneng.2022.111407
32.
Karakas
,
E. S.
,
Tokgöz
,
N.
,
Watanabe
,
H.
,
Aureli
,
M.
, and
Evrensel
,
C. A.
,
2022
, “
Comparison of Transport Equation-Based Cavitation Models and Application To Industrial Pumps With Inducers
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011201
.10.1115/1.4051471
33.
Lundgreen
,
R. K.
,
Maynes
,
D.
,
Gorrell
,
S.
, and
Oliphant
,
K.
,
2022
, “
Influence of Geometric Variations of an Inlet Cover Bleed System on Inducer Performance for an Axial Pump Operating Under Cavitating Conditions
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081402
.10.1115/1.4053648
34.
Pavlenko
,
I.
,
Kulikov
,
O.
,
Ratushnyi
,
O.
,
Ivanov
,
V.
,
Piteľ
,
J.
, and
Kondus
,
V.
,
2023
, “
Effect of Impeller Trimming on the Energy Efficiency of the Counter-Rotating Pumping Stage
,”
Appl. Sci.
,
13
(
2
), p.
761
.10.3390/app13020761
35.
Tosin, S., Friedrichs, J., and Dreiss, A., 2015, “New Design Approach for a Highly Loaded Counter-Rotating Mixed-Flow Pump in Cavitation Conditions,” 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (
ETC11
), Madrid, Spain, Mar. 23–27, pp.
1
11
.https://www.euroturbo.eu/publications/proceedings-papers/etc2015-199/
36.
Chen
,
Y.
,
An
,
C.
,
Zhang
,
R.
,
Fu
,
Q.
, and
Zhu
,
R.
,
2023
, “
Research on Two-Way Contra-Rotating Axial-Flow Pump–Turbine With Various Blade Angles in Pump Mode
,”
Processes
,
11
(
5
), p.
1552
.10.3390/pr11051552
37.
Tosin
,
S.
,
Friedrichs
,
J.
,
Farooqi
,
R.
, and
Dreiss
,
A.
, “
New Approach for Multi-Rotor Mixed-Flow Pump Design and Optimization
,”
ASME
Paper No. FEDSM2014-21595.10.1115/FEDSM2014-21595
38.
Dehnavi
,
E.
,
Solis
,
M.
,
Danlos
,
A.
,
Kebdani
,
M.
, and
Bakir
,
F.
,
2023
, “
Improving the Performance of an Innovative Centrifugal Pump Through the Independent Rotation of an Inducer and Centrifugal Impeller Speeds
,”
Energies
,
16
(
17
), p.
6321
.10.3390/en16176321
39.
Dehnavi
,
E.
,
Danlos
,
A.
,
Solis
,
M.
,
Kebdani
,
M.
, and
Bakir
,
F.
,
2024
, “
Study on the Pump Cavitation Characteristic Through Novel Independent Rotation of Inducer and Centrifugal Impeller in co-Rotation and Counter-Rotation Modes
,”
Phys. Fluids
,
36
(
1
), p.
015120
.10.1063/5.0182731
40.
White, F. M., 2000, Fluid Mechanics, McGraw-Hill Higher Education, New York.
You do not currently have access to this content.