Abstract

Micro-vortex generators (MVGs) are simple vane-type devices installed on surfaces , i.e., aircraft wing and tail, to control boundary layer flow separation. They are cost-effective and require an efficient numerical method to resolve the embedded longitudinal vortical structure, as the flow behind them is highly unsteady. This numerical study aims at analyzing the effect of MVGs on the NACA 4412 airfoil performance using the detached eddy simulation (DES) at 60,000 Reynolds number based on the freestream velocity of 11 m/s and the wing chord of 0.1 meter. The MVGs are installed in a row in counter-rotating configuration at 10% chord of the airfoil. The DES is utilized to resolve the high energetic scales of the vortex behind the MVGs which Reynolds-averaged Navier–Stokes (RANS) is not likely to resolve properly. A comparison of DES simulations with the RANS simulations shows that RANS modeling is not sufficient to capture the airfoil flow characteristics at higher angles of attack. The DES simulations resolve the turbulent scales downstream of the MVGs effectively and produce significant improvement in NACA 4412 wing performance. It has been observed that airfoil lift coefficient at 10 deg angle of attack with the MVGs is 5% higher than the airfoil without MVGs. MVGs along the airfoil chordwise location demonstrate that MVGs at 25% chord are more effective in managing separation over the airfoil compared to those at 10% chord location.

References

1.
Taylor
,
H. D.
,
1947
, “
The Elimination of Diffuser Separation by Vortex Generators
,”
United Aircraft Corporation
, Moscow, Russia, Report No. R-4012-3.
2.
Lin
,
J. C.
,
Howard
,
F. G.
, and
Selby
,
G. V.
,
1990
, “
Small Submerged Vortex Generators for Turbulent Flow Separation Control
,”
J. Spacecr. Rockets
,
27
(
5
), pp.
503
507
.10.2514/3.26172
3.
Lin
,
J. C.
,
2002
, “
Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation
,”
Prog. Aerosp. Sci.
,
38
(
4–5
), pp.
389
420
.10.1016/S0376-0421(02)00010-6
4.
Pearcey
,
H.
,
1961
, “
Shock Induced Separation and Its Prevention by Design and Boundary Layer Control
,”
Boundary Layer and Flow Control, Its Principle and Applications
, Vol.
2
,
G. V.
Lachmann
, ed., Pergamon, Oxford, UK.
5.
Khare
,
A.
, and
Khurana
,
S.
,
2022
, “
Effect of Micro Vortex Generator Width on Vortex Characteristics
,”
AIAA
Paper No. 2022-3388.10.2514/6.2022-3388
6.
Khare
,
A.
, and
Khurana
,
S.
,
2024
, “
Effect of Perforation on Vortex Characteristics of a Microvortex Generator Mounted on a Flat Plate
,”
ASME. J. Fluids Eng.
,
146
(
5
), p.
051303
.10.1115/1.4064009
7.
Kerho
,
M.
,
Hutcherson
,
S.
,
Blackwelder
,
R. F.
, and
Liebeck
,
R. H.
,
1993
, “
Vortex Generators Used to Control Laminar Separation Bubbles
,”
J. Aircr.
,
30
(
3
), pp.
315
319
.10.2514/3.46336
8.
Godard
,
G.
, and
Stanislas
,
N.
,
2006
, “
Control of a Decelerating Boundary Layer. Part 1: Optimization of Passive Vortex Generators
,”
Aerosp. Sci. Technol.
,
10
(
3
), pp.
181
191
.10.1016/j.ast.2005.11.007
9.
Li
,
X.
,
Yang
,
K.
, and
Wang
,
X.
,
2019
, “
Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance
,”
Energies
,
12
(
5
), p.
959
.10.3390/en12050959
10.
Iosu
,
I.-U.
,
Iñigo
,
E.
,
Unai
,
F.-G.
,
Ekaitz
,
Z.
, and
Javier
,
S.
,
2019
, “
Computational Characterization of a Rectangular Vortex Generator on a Flat Plate for Different Vane Heights and Angles
,”
Appl. Sci.
,
9
(
5
), p.
995
.10.3390/app9050995
11.
Heffron
,
A. P.
,
Williams
,
J. J.
, and
Avital
,
E. J.
,
2021
, “
Large Eddy Simulation of Micro Vortex Generators in a Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051208
.10.1115/1.4049817
12.
Smith
,
F. T.
,
1994
, “
Theoretical Prediction and Design for Vortex Generators in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
270
, pp.
91
132
.10.1017/S0022112094004210
13.
Bender
,
E. E.
,
Anderson
,
B. H.
, and
Yagle
,
P. J.
,
1999
, “
Vortex Generator Modelling for Navier- Stokes Codes
,”
ASME
Paper No. FEDSM99-6919.10.1115/FEDSM99-6919
14.
Allan
,
B. G.
,
Yao
,
C. S.
, and
Lin
,
J. C.
,
2002
, “
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
,”
AIAA
Paper No. 6.2002-3160.10.2514/6.2002-3160
15.
Lin
,
J. C.
,
Robinson
,
S. K.
,
McGhee
,
R. J.
, and
Valarezo
,
W. O.
,
1994
, “
Separation Control on High-Lift Airfoils Via Micro-Vortex Generators
,”
J. Aircr.
,
31
(
6
), pp.
1317
1323
.10.2514/3.46653
16.
Shan
,
H.
,
Jiang
,
L.
,
Liu
,
C.
,
Love
,
M.
, and
Maines
,
B.
,
2008
, “
Numerical Study of Passive and Active Flow Separation Control Over a NACA0012 Airfoil
,”
Comput. Fluids
,
37
(
8
), pp.
975
992
.10.1016/j.compfluid.2007.10.010
17.
Tebbiche
,
H.
, and
Boutoudj
,
M. S.
,
2015
, “
Passive Control on the NACA 4412 Airfoil and Effects on the Lift
,” Design and Modeling of Mechanical Systems - II, Proceedings of the Sixth Conference on Design and Modeling of Mechanical Systems (
CMSM'2015
), Hammamet, Tunisia, Mar. 23–25, pp.
775
781
.10.1007/978-3-319-17527-0_77
18.
Li-Shu
,
H.
,
Chao
,
G.
,
Wen-Ping
,
S.
, and
Ke
,
S.
,
2013
, “
Airfoil Flow Control Using Vortex Generators and a Gurney Flap
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
12
), pp.
2701
2706
.10.1177/0954406213478533
19.
Holmes
,
A.
,
Hickey
,
P.
,
Murphy
,
W.
, and
Hilton
,
D.
,
1987
, “
The Application of Sub-Boundary Layer Vortex Generators to Reduce Canopy “Mach Rumble” Interior Noise on the Gulfstream III
,”
AIAA
Paper No. 91-0042.10.2514/6.91-0042
20.
Anabtawi
,
A. J.
,
Blackwelder
,
R. F.
,
Lissaman
,
P. B. S.
, and
Liebeck
,
R. H.
,
1999
, “
An Experimental Investigation of Boundary Layer Ingestion in a Diffusing S-Duct With and Without Passive Flow Control
,”
AIAA
Paper No. 6.1999-739.10.2514/6.1999-739
21.
Rahal
,
S.
, and
Dutta
,
S.
,
2024
, “
Aerodynamic Performance and Stall Characteristics of the NACA4412 Airfoil: Low Reynolds Number
,”
Sādhanā
,
49
(
1
), p.
25
.10.1007/s12046-023-02349-z
22.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
23.
Molina
,
E.
,
Spode
,
C.
,
Silva
,
R. G. A.
,
Manosalvas-Kjono
,
D. E.
,
Nimmagadda
,
S.
,
Economon
,
T. D.
,
Alonso
,
J. J.
, and
Righi
,
M.
,
2017
, “
Hybrid RANS/LES Calculations in SU2
,”
AIAA
Paper No. 2017-4284.10.2514/6.2017-4284
24.
Economon
,
T. D.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2016
, “
SU2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA J.
,
54
(
3
), pp.
828
846
.10.2514/1.J053813
25.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 6.1992-439.10.2514/6.1992-439
26.
Ladson
,
C. L.
, and
Brooks
,
C. W.
, Jr.
,
1975
, “
Development of a Computer Program to Obtain Ordinates for NACA 4-Digit, 4-Digit Modified, 5-Digit, and 16-Series Airfoils
,” NASA, Washington, DC, Report No.
NASA-TM-X-3284
.https://ntrs.nasa.gov/api/citations/19760003945/downloads/19760003945.pdf
27.
Clark
,
A. M.
,
Slotnick
,
J. P.
,
Taylor
,
N. J.
, and
Rumsey
,
C. L.
,
2020
, “
Requirements and Challenges for CFD Validation Within the High-Lift Common Research Model Ecosystem
,”
AIAA
Paper No. 2020-2772.10.2514/6.2020-2772
28.
Yao
,
C. S.
,
Lin
,
J. C.
, and
Allan
,
B. G.
,
2002
, “
Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate
,”
AIAA
Paper No. 6.2002-3162.10.2514/6.2002-3162
You do not currently have access to this content.