Abstract

Researchers have extensively investigated the phenomenon of electrohydrodynamic sedimentation of single drops. But until now, very few have addressed the electrohydrodynamic settling of a compound drop when it is under dual effect of charge convection and interface deformation. The choice between analysis for concentric or eccentric regime is a crucial decision that must be made before beginning any compound drop analysis. Hence, the limit to concentric electrohydrodynamic analysis of compound drops needs to be established. In this paper, we attempt to resolve so by creating a three-dimensional analytical model of a circular compound drop subjected to electrostatic field with varied orientation of electric field. In order to establish the demarcating limit between analysis for concentric and eccentric regime, critical assessment of viscosity, permittivity and conductivity of the phases, electric field application direction, and relative size of the shell and core on the involved electrohydrodynamic settling are also carried out. According to our research, the compound drop's directional divergence from the path of gravity can be effectively controlled by adjusting the conductivity and permittivity ratio. Moreover, the shell and core drop may attempt to deviate laterally in different directions at high viscosity ratios. This finally paves the way to establish that the validity of analysis for concentric and eccentric regime of compound drop is dictated by the polynomial relation between viscosity ratio and radius ratio of the two drops.

References

1.
Beringer
,
C. K.
,
Morgan
,
T. B.
,
Kastengren
,
A. L.
, and
Heindel
,
T. J.
,
2023
, “
Noninvasive Imaging of a Liquid Jet
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021404
.10.1115/1.4056130
2.
Seksinsky
,
D.
, and
Marshall
,
J. S.
,
2021
, “
Droplet Impingement on a Surface at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
143
(
2
), p. 021304.10.1115/1.4048289
3.
Kamin
,
M.
, and
Khare
,
P.
,
2022
, “
The Effect of Weber Number on Spray and Vaporization Characteristics of Liquid Jets Injected in Air Crossflow
,”
ASME J. Fluids Eng.
,
144
(
6
), p. 061108.10.1115/1.4053552
4.
Wu
,
H.
,
Zhang
,
Z.
,
Zhu
,
D.
,
Ai
,
Y.
, and
Li
,
X.
,
2022
, “
Spray Entrainment Coefficient Modeling for High Injection Pressure Based on Entrainment Velocity and Force Analysis
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101402
.10.1115/1.4054192
5.
Cui
,
X.
,
Fu
,
Q.-F.
,
Yang
,
L.
,
Xie
,
L.
, and
Jia
,
B.-Q.
,
2020
, “
Linear Instability of Liquid Sheets Subjected to a Transverse Electric Field
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011203
.10.1115/1.4044828
6.
Zuo
,
L.
,
Wang
,
J.
,
Mei
,
D.
,
Wang
,
D.
,
Zhang
,
W.
,
Xu
,
H.
,
Yao
,
J.
, and
Zhao
,
T.
,
2023
, “
Atomization and Combustion Characteristics of a Biodiesel–Ethanol Fuel Droplet in a Uniform DC Electric Field
,”
Phys. Fluids
,
35
(
1
), p.
013303
.10.1063/5.0124791
7.
Peng
,
Y.
,
Zhang
,
H.
,
Yu
,
B.
,
Huo
,
C.
,
Yin
,
H.
, and
Gong
,
H.
,
2024
, “
Effect of Electric Field on Separation Characteristics of Oil–Water–Solid Three Phases Separating Device
,”
Process Saf. Environ. Prot.
,
183
, pp.
138
151
.10.1016/j.psep.2023.12.059
8.
Song
,
C.
, and
Rutledge
,
G. C.
,
2022
, “
Electrospun Liquid-Infused Membranes for Emulsified Oil/Water Separation
,”
Langmuir
,
38
(
7
), pp.
2301
2313
.10.1021/acs.langmuir.1c03016
9.
Sjöblom
,
J.
,
Mhatre
,
S.
,
Simon
,
S.
,
Skartlien
,
R.
, and
Sørland
,
G.
,
2021
, “
Emulsions in External Electric Fields
,”
Adv. Colloid Interface Sci.
,
294
, p.
102455
.10.1016/j.cis.2021.102455
10.
Liu
,
Z.
,
Wyss
,
H. M.
,
Fernandez-Nieves
,
A.
, and
Shum
,
H. C.
,
2015
, “
Dynamics of Oppositely Charged Emulsion Droplets
,”
Phys. Fluids
,
27
(
8
), p.
082003
.10.1063/1.4928854
11.
Esfahani
,
I. C.
, and
Sun
,
H.
,
2023
, “
A Droplet-Based Micropillar-Enhanced Acoustic Wave (μPAW) Device for Viscosity Measurement
,”
Sens. Actuators A Phys.
,
350
, p.
114121
.10.1016/j.sna.2022.114121
12.
Esfahani
,
I. C.
,
Ji
,
S.
, and
Sun
,
H.
,
2023
, “
A Drop-on-Micropillars (DOM)-Based Acoustic Wave Viscometer for High Viscosity Liquid Measurement
,”
IEEE Sens. J.
,
23
(
20
), pp.
24224
24230
.10.1109/JSEN.2023.3309757
13.
Esfahani
,
I. C.
,
Ji
,
S.
,
Alamgir Tehrani
,
N.
, and
Sun
,
H.
,
2023
, “
An Ultrasensitive Micropillar-Enabled Acoustic Wave (μPAW) Microdevice for Real-Time Viscosity Measurement
,”
Microsyst. Technol.
,
29
(
11
), pp.
1631
1641
.10.1007/s00542-023-05530-w
14.
Taylor
,
G. I.
,
1966
, “
Studies in Electrohydrodynamics. I. The Circulation Produced in a Drop by an Electric Field
,”
Proc. R. Soc. Lond. Math. Phys. Sci.
,
291
(
1425
), pp.
159
166
.10.1098/rspa.1966.0086
15.
Vizika
,
O.
, and
Saville
,
D. A.
,
1992
, “
The Electrohydrodynamic Deformation of Drops Suspended in Liquids in Steady and Oscillatory Electric Fields
,”
J. Fluid Mech.
,
239
(
-1
), p.
1
.10.1017/S0022112092004294
16.
Ward
,
T.
, and
Homsy
,
G. M.
,
2001
, “
Electrohydrodynamically Driven Chaotic Mixing in a Translating Drop
,”
Phys. Fluids
,
13
(
12
), pp.
3521
3525
.10.1063/1.1416190
17.
Ward
,
T.
, and
Homsy
,
G. M.
,
2006
, “
Chaotic Streamlines in a Translating Drop With a Uniform Electric Field
,”
J. Fluid Mech.
,
547
(
-1
), p.
215
.10.1017/S0022112005007354
18.
Lac
,
E.
, and
Homsy
,
G. M.
,
2007
, “
Axisymmetric Deformation and Stability of a Viscous Drop in a Steady Electric Field
,”
J. Fluid Mech.
,
590
, pp.
239
264
.10.1017/S0022112007007999
19.
Supeene
,
G.
,
Koch
,
C. R.
, and
Bhattacharjee
,
S.
,
2008
, “
Deformation of a Droplet in an Electric Field: Nonlinear Transient Response in Perfect and Leaky Dielectric Media
,”
J. Colloid Interface Sci.
,
318
(
2
), pp.
463
476
.10.1016/j.jcis.2007.10.022
20.
Thaokar
,
R. M.
,
2012
, “
Dielectrophoresis and Deformation of a Liquid Drop in a Non-Uniform, Axisymmetric AC Electric Field
,”
Eur. Phys. J. E
,
35
(
8
), pp. 1–15.10.1140/epje/i2012-12076-y
21.
Zhang
,
J.
,
Zahn
,
J. D.
, and
Lin
,
H.
,
2013
, “
Transient Solution for Droplet Deformation Under Electric Fields
,”
Phys. Rev. E
,
87
(
4
), p.
043008
.10.1103/PhysRevE.87.043008
22.
Mandal
,
S.
, and
Chakraborty
,
S.
,
2017
, “
Effect of Uniform Electric Field on the Drop Deformation in Simple Shear Flow and Emulsion Shear Rheology
,”
Phys. Fluids
,
29
(
7
), p.
072109
.10.1063/1.4995473
23.
Santra
,
S.
,
Mandal
,
S.
, and
Chakraborty
,
S.
,
2019
, “
Confinement Effect on Electrically Induced Dynamics of a Droplet in Shear Flow
,”
Phys. Rev. E
,
100
(
3-1
), p.
033101
.10.1103/PhysRevE.100.033101
24.
Kahali
,
T.
,
Santra
,
S.
, and
Chakraborty
,
S.
,
2022
, “
Electrically Modulated Cross-Stream Migration of a Compound Drop in Micro-Confined Oscillatory Flow
,”
Phys. Fluids
,
34
(
12
), p.
122015
.10.1063/5.0127860
25.
Zhang
,
Y.-M.
,
Su
,
Z.-G.
,
Luo
,
K.
, and
Yi
,
H.-L.
,
2022
, “
Transient Oscillation Response Characteristics of an Electrohydrodynamic Settling Drop Subjected to a Uniform Electric Field
,”
Phys. Fluids
,
34
(
4
), p.
043601
.10.1063/5.0086168
26.
Sau
,
A.
,
2023
, “
Unsteady Electrorotation of a Viscous Drop in a Uniform Electric Field
,”
Phys. Fluids
,
35
(
4
), p.
047116
.10.1063/5.0140845
27.
Mandal
,
S.
, and
Chakraborty
,
S.
,
2017
, “
Uniform Electric-Field-Induced Non-Newtonian Rheology of a Dilute Suspension of Deformable Newtonian Drops
,”
Phys. Rev. Fluids
,
2
(
9
), p.
093602
.10.1103/PhysRevFluids.2.093602
28.
Santra
,
S.
,
Jana
,
A.
, and
Chakraborty
,
S.
,
2020
, “
Electric Field Modulated Deformation Dynamics of a Compound Drop in the Presence of Confined Shear Flow
,”
Phys. Fluids
,
32
(
12
), p.
122006
.10.1063/5.0031807
29.
Hao
,
G.
,
Yu
,
W.
,
Lv
,
L.
,
Liu
,
X.
, and
Zhang
,
L.-L.
,
2024
, “
Experimental Investigation and Theoretical Prediction of Droplet Breakup Under a Combined Electric Field and Shear Flow Field
,”
Chem. Eng. Sci.
,
287
, p.
119738
.10.1016/j.ces.2024.119738
30.
Poddar
,
A.
,
Mandal
,
S.
,
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2019
, “
Electrical Switching of a Surfactant Coated Drop in Poiseuille Flow
,”
J. Fluid Mech.
,
870
, pp.
27
66
.10.1017/jfm.2019.236
31.
Luo
,
K.
,
Wu
,
J.
,
Yi
,
H.-L.
, and
Tan
,
H.-P.
,
2020
, “
Numerical Analysis of Two-Phase Electrohydrodynamic Flows in the Presence of Surface Charge Convection
,”
Phys. Fluids
,
32
(
12
), p.
123606
.10.1063/5.0028635
32.
Behera
,
N.
, and
Chakraborty
,
S.
,
2020
, “
Effect of Charge Convection on Gravitational Settling of Drop in Uniform Electric Field
,”
Phys. Fluids
,
32
(
11
), p.
112013
.10.1063/5.0026265
33.
Pethig
,
R. R.
,
2017
,
Dielectrophoresis
,
John Wiley & Sons.
Hoboken, NJ
.10.1002/9781118671443
34.
Zheng
,
B.
,
Tice
,
J. D.
, and
Ismagilov
,
R. F.
,
2004
, “
Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays
,”
Anal. Chem.
,
76
(
17
), pp.
4977
4982
.10.1021/ac0495743
35.
Bandopadhyay
,
A.
,
Mandal
,
S.
,
Kishore
,
N. K.
, and
Chakraborty
,
S.
,
2016
, “
Uniform Electric-Field-Induced Lateral Migration of a Sedimenting Drop
,”
J. Fluid Mech.
,
792
, pp.
553
589
.10.1017/jfm.2016.84
36.
Poddar
,
A.
,
Mandal
,
S.
,
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2018
, “
Sedimentation of a Surfactant-Laden Drop Under the Influence of an Electric Field
,”
J. Fluid Mech.
,
849
, pp.
277
311
.10.1017/jfm.2018.415
37.
Mahdavi
,
Z.
,
Rezvani
,
H.
, and
Moraveji
,
M. K.
,
2020
, “
Core–Shell Nanoparticles Used in Drug Delivery-Microfluidics: A Review
,”
RSC Adv.
,
10
(
31
), pp.
18280
18295
.10.1039/D0RA01032D
38.
Heidari
,
F.
,
Jafari
,
S. M.
,
Ziaiifar
,
A. M.
, and
Malekjani
,
N.
,
2022
, “
Stability and Release Mechanisms of Double Emulsions Loaded With Bioactive Compounds; a Critical Review
,”
Adv. Colloid Interface Sci.
,
299
, p.
102567
.10.1016/j.cis.2021.102567
39.
Li
,
M.
,
Kang
,
W.
,
Li
,
Z.
,
Yang
,
H.
,
Jia
,
R.
,
He
,
Y.
,
Kang
,
X.
,
Zheng
,
Z.
,
Wang
,
Y.
,
Sarsenbekuly
,
B.
, and
Gabdullin
,
M.
,
2021
, “
Stability of Oil-in-Water (O/W) Nanoemulsions and Its Oil Washing Performance for Enhanced Oil Recovery
,”
Phys. Fluids
,
33
(
7
), p.
072002
.10.1063/5.0058759
40.
Czekalska
,
M. A.
,
Jacobs
,
A. M. J.
,
Toprakcioglu
,
Z.
,
Kong
,
L.
,
Baumann
,
K. N.
,
Gang
,
H.
,
Zubaite
,
G.
, and
et al.
,
2021
, “
One-Step Generation of Multisomes From Lipid-Stabilized Double Emulsions
,”
ACS Appl. Mater. Interfaces
,
13
(
5
), pp.
6739
6747
.10.1021/acsami.0c16019
41.
Rushton
,
E.
, and
Davies
,
G. A.
,
1983
, “
Settling of Encapsulated Droplets at Low Reynolds Numbers
,”
Int. J. Multiphase Flow
,
9
(
3
), pp.
337
342
.10.1016/0301-9322(83)90111-8
42.
Brunn
,
P. O.
, and
Roden
,
T.
,
1985
, “
On the Deformation and Drag of a Type-A Multiple Drop at Low Reynolds Number
,”
J. Fluid Mech.
,
160
, pp.
211
234
.10.1017/S0022112085003457
43.
Sadhal
,
S. S.
, and
Oguz
,
H. N.
,
1985
, “
Stokes Flow Past Compound Multiphase Drops: The Case of Completely Engulfed Drops/Bubbles
,”
J. Fluid Mech.
,
160
, pp.
511
529
.10.1017/S0022112085003585
44.
Stone
,
H. A.
, and
Leal
,
L. G.
,
1990
, “
Breakup of Concentric Double Emulsion Droplets in Linear Flows
,”
J. Fluid Mech.
,
211
, pp.
123
156
.10.1017/S0022112090001525
45.
Johnson
,
R. E.
, and
Sadhal
,
S. S.
,
1985
, “
Fluid Mechanics of Compound Multiphase Drops and Bubbles
,”
Annu. Rev. Fluid Mech.
,
17
(
1
), pp.
289
320
.10.1146/annurev.fl.17.010185.001445
46.
Xu
,
X.
, and
Homsy
,
G. M.
,
2006
, “
The Settling Velocity and Shape Distortion of Drops in a Uniform Electric Field
,”
J. Fluid Mech.
,
564
, p.
395
.10.1017/S0022112006001480
47.
Tsukada
,
T.
,
Mayama
,
J.
,
Sato
,
M.
, and
Hozawa
,
M.
,
1997
, “
Theoretical and Experimental Studies on the Behavior of a Compound Drop Under a Uniform DC Electric Field
,”
J. Chem. Eng. Jpn.
,
30
(
2
), pp.
215
222
.10.1252/jcej.30.215
48.
Behjatian
,
A.
, and
Esmaeeli
,
A.
,
2013
, “
Electrohydrodynamics of a Liquid Column Under a Transverse Electric Field in Confined Domains
,”
Int. J. Multiphase Flow
,
48
, pp.
71
81
.10.1016/j.ijmultiphaseflow.2012.08.006
49.
Soni
,
P.
,
Juvekar
,
V. A.
, and
Naik
,
V. M.
,
2013
, “
Investigation on Dynamics of Double Emulsion Droplet in a Uniform Electric Field
,”
J. Electrostat.
,
71
(
3
), pp.
471
477
.10.1016/j.elstat.2012.12.006
50.
Soni
,
P.
,
Dixit
,
D.
, and
Juvekar
,
V. A.
,
2017
, “
Effect of Conducting Core on the Dynamics of a Compound Drop in an AC Electric Field
,”
Phys. Fluids
,
29
(
11
), p.
112108
.10.1063/1.4999986
51.
Soni
,
P.
,
Thaokar
,
R. M.
, and
Juvekar
,
V. A.
,
2018
, “
Electrohydrodynamics of a Concentric Compound Drop in an AC Electric Field
,”
Phys. Fluids
,
30
(
3
), p.
032102
.10.1063/1.5009645
52.
Boruah
,
M. P.
,
Randive
,
P. R.
, and
Pati
,
S.
,
2022
, “
Electrohydrodynamic Tuning of the Migration Characteristics of a Sedimenting Compound Drop
,”
J. Fluid Mech.
,
953
, p. A13.10.1017/jfm.2022.929
53.
Leal
,
L. G.
,
2007
,
Advanced Transport Phenomena
,
Cambridge University Press
,
Cambridge, UK
.
54.
Das
,
S.
,
Mandal
,
S.
, and
Chakraborty
,
S.
,
2020
, “
Interfacial Viscosity-Dictated Morpho-Dynamics of a Compound Drop in Linear Flows
,”
Phys. Fluids
,
32
(
6
), p.
062006
.10.1063/5.0009659
55.
Jadhav
,
S. N.
, and
Ghosh
,
U.
,
2022
, “
Effect of Interfacial Kinetics on the Settling of a Drop in a Viscous Medium
,”
Phys. Fluids
,
34
(
4
), p.
042007
.10.1063/5.0086538
56.
Happel
,
J.
, and
Brenner
,
H.
,
1973
, “
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
,” Vol. 1.
Springer Science & Business Media
, Dordrecht, The Netherlands.10.1007/978-94-009-8352-6
57.
Boruah
,
M. P.
,
Randive
,
P. R.
,
Pati
,
S.
, and
Sahu
,
K. C.
,
2022
, “
Charge Convection and Interfacial Deformation of a Compound Drop in Plane Poiseuille Flow Under an Electric Field
,”
Phys. Rev. Fluids
,
7
(
1
), p.
013703
.10.1103/PhysRevFluids.7.013703
58.
Chan
,
P. C.
, and
Leal
,
L. G.
,
1979
, “
The Motion of a Deformable Drop in a Second-Order Fluid
,”
J. Fluid Mech.
,
92
(
1
), pp.
131
170
.10.1017/S0022112079000562
You do not currently have access to this content.