Room-temperature tensile straining of mild steel followed by aging at 350 F causes return of the upper yield and a raising of the stress-strain curve. Tensile tests on a special rimmed steel of low Mn/C ratio show not only the expected raising of the stress-strain curve, but raising by an additional amount when several small increments of strain are each followed by aging at moderate temperatures. Longitudinal tensile prestrain by rolling gives substantially the same results. Tests of specimens prestrained in a limited region by impact or in slow tension and aged indicate that embrittlement of the whole specimen may result. The combined theories of Griffith and Orowan, plus an extension of the Ludwik triaxiality concept, can provide a consistent description of the local stress and average stress (energy) criteria that are necessary and sufficient for high-speed low-energy fracture to occur.

This content is only available via PDF.
You do not currently have access to this content.