Abstract

In this paper, the effects of modifying the blade pressure side (PS) on unsteady pressure pulsation and flow structures in a low specific speed centrifugal pump are carried out by experimental and computational fluid dynamics (CFD). Seven monitor points are arranged in the circumferential direction of the impeller outlet to capture the pressure signals in the volute at flow rate of 0.2–1.6Qd. Results show that the blade PS modification introduced here can significantly alleviate the amplitude of pressure pulsation at blade passing frequency (fBPF) in all concerned operation conditions. To study the effects of blade modification on the internal flow field, the volute domain is replaced by an even outlet region for CFD analysis. The shear stress transfer (SST) turbulence model is adopted for steady-state numerical simulation while the delayed detached eddy simulation (DDES) based on the SST approach is adopted for transient simulation. Results show that local unsteady velocity fluctuation is the dominant reason for pressure pulsation in the volute. After blade PS modification, the relative velocity distribution at the impeller outlet is more uniform and the intensity of shedding vortex at the blade trailing edge (TE) decreases significantly. The change of internal flow structure improves the uniformity of circumferential velocity distribution the downstream of the impeller outlet, which leads to the decrease of pressure fluctuation amplitude in the volute. Meanwhile, the local Euler head (LEH) distribution at the impeller outlet and the blade loading of PS are presented and compared. It can be concluded that the reduction of pressure pulsation attributes to a more uniform energy distribution at the impeller outlet which is achieved by actively unloading the PS of the modified blades.

References

1.
Choi
,
J. S.
,
Mclaughlin
,
D. K.
, and
Thompson
,
D. E.
,
2003
, “
Experiments on the Unsteady Flow Field and Noise Generation in a Centrifugal Pump Impeller
,”
J. Sound Vib.
,
263
(
3
), pp.
493
514
.10.1016/S0022-460X(02)01061-1
2.
Arndt, N., Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1989
, “
Rotor-Stator Interaction in a Diffuser Pump
,”
ASME. J. Turbomach
, 111(3), pp. 213–221.10.1115/1.3262258
3.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1995
, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part A: Use of PDV Data to Compute the Pressure Field
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
24
29
.10.1115/1.2816813
4.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1995
, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
30
35
.10.1115/1.2816814
5.
Parrondo-Gayo
,
J. L.
,
González-Pérez
,
J.
, and
Fernández-Francos
,
J. N.
,
2002
, “
The Effect of the Operating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
784
790
.10.1115/1.1493814
6.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
, 2nd ed.,
Springer
,
Berlin, Germany
.
7.
Yang
,
S. S.
,
Liu
,
H. L.
,
Kong
,
F. Y.
,
Xia
,
B.
, and
Tan
,
L. W.
,
2014
, “
Effects of the Radial Gap Between Impeller Tips and Volute Tongue Influencing the Performance and Pressure Pulsations of Pump as Turbine
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
054501
.10.1115/1.4026544
8.
Kergourlay
,
G.
,
Younsi
,
M.
,
Bakir
,
F.
, and
Rey
,
R.
,
2007
, “
Influence of Splitter Blades on the Flow Field of a Centrifugal Pump: Test-Analysis Comparison
,”
Int. J. Rotating Mach.
,
2007
(
13
), pp.
1
13
.10.1155/2007/85024
9.
Li, Q., Li, S., Wu, P., Huang, B., and Wu, D.,
2021
, “
Investigation on Reduction of Pressure Fluctuation for a Double-Suction Centrifugal Pump
,”
Chinese J. Mech. Eng.
, 34(1), pp. 181–198.10.1186/s10033-020-00505-8
10.
Zeng
,
G.
,
Li
,
Q.
,
Wu
,
P.
,
Qian
,
B.
,
Huang
,
B.
,
Li
,
S.
, and
Wu
,
D.
,
2020
, “
Investigation of the Impact of Splitter Blades on a Low Specific Speed Pump for Fluid-Induced Vibration
,”
J. Mech. Sci. Technol.
,
34
(
7
), pp.
2883
2893
.10.1007/s12206-020-0620-7
11.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M. G.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.10.1115/1.4031911
12.
Zhang
,
N.
,
Liu
,
X. K.
,
Gao
,
B.
,
Wang
,
X. J.
, and
Xia
,
B.
,
2019
, “
Effects of Modifying the Blade Trailing Edge Profile on Unsteady Pressure Pulsations and Flow Structures in a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
75
(
FEB
), pp.
227
238
.10.1016/j.ijheatfluidflow.2019.01.009
13.
Qian
,
B.
,
Wu
,
P.
,
Huang
,
B.
,
Zhang
,
K.
,
Li
,
S.
, and
Wu
,
D.
,
2020
, “
Optimization of a Centrifugal Impeller on Blade Thickness Distribution to Reduce Hydro-Induced Vibration
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021202
.10.1115/1.4044965
14.
Li
,
S. Y.
,
Wu
,
P.
, and
Wu
,
D. Z.
,
2016
, “
Hydraulic Optimization and Loss Analyses of a Low Specific-Speed Centrifugal Pump With Variable-Thickness Blades
,”
ASME
Paper No. FEDSM2016-7814.10.1115/FEDSM2016-7814
15.
Al-Qutub
,
A. M.
,
Khalifa
,
A. E.
, and
Al-Sulaiman
,
F. A.
,
2012
, “
Exploring the Effect of v-Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021301
.10.1115/1.4004798
16.
Yan
,
P.
,
Chu
,
N.
,
Wu
,
D.
,
Cao
,
L.
,
Yang
,
S.
, and
Wu
,
P.
,
2017
, “
Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011101
.10.1115/1.4034365
17.
Li
,
Q.-Q.
,
Zhao
,
G.-S.
,
Wu
,
C.-S.
,
Wu
,
P.
,
Wu
,
D.-Z.
, and
Guo
,
C.-L.
,
2020
, “
Investigation on the Energy Exchange Characteristics of the Regenerative Flow Pump in an Automobile Fuel System
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111206
.10.1115/1.4047803
18.
Gao
,
Z.
,
Zhu
,
W.
,
Lu
,
L.
,
Deng
,
J.
,
Zhang
,
J.
, and
Wuang
,
F.
,
2014
, “
Numerical and Experimental Study of Unsteady Flow in a Large Centrifugal Pump With Stay Vanes
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071101
.10.1115/1.4026477
19.
Ni
,
D.
,
Yang
,
M.
,
Gao
,
B.
,
Zhang
,
N.
, and
Zhong
,
L.
,
2018
, “
Experimental and Numerical Investigation on the Pressure Pulsation and Instantaneous Flow Structure in a Nuclear Reactor Coolant Pump
,”
Nucl. Eng. Des.
,
337
(
2018
), pp.
261
270
.10.1016/j.nucengdes.2018.07.014
20.
Zhang
,
N.
,
Liu
,
X.
,
Gao
,
B.
, and
Xia
,
B.
,
2019
, “
DDES Analysis of the Unsteady Wake Flow and Its Evolution of a Centrifugal Pump
,”
Renewable Energy
,
141
(
2019
), pp.
570
582
.10.1016/j.renene.2019.04.023
21.
Johnson
,
M. W.
, and
Moore
,
J.
,
1983
, “
Secondary Flow Mixing Losses in a Centrifugal Impeller
,”
ASME J. Eng. Power
,
105
(
1
), pp.
24
39
.10.1115/1.3227394
22.
Keller
,
J.
,
Blanco
,
E.
,
Barrio
,
R.
, and
Parrondo
,
J.
,
2014
, “
PIV Measurements of the Unsteady Flow Structures in a Volute Centrifugal Pump at a High Flow Rate
,”
Exp. Fluids
,
55
(
10
), p.
1820
.10.1007/s00348-014-1820-7
23.
Zhang
,
N.
,
Gao
,
B.
,
Li
,
Z.
,
Ni
,
D.
, and
Jiang
,
Q.
,
2018
, “
Unsteady Flow Structure and Its Evolution in a Low Specific Speed Centrifugal Pump Measured by PIV
,”
Exp. Therm. Fluid Sci.
,
97
(
2018
), pp.
133
144
.10.1016/j.expthermflusci.2018.04.013
24.
Yan
,
P.
,
Li
,
S.
,
Yang
,
S.
,
Wu
,
P.
, and
Wu
,
D.
,
2017
, “
Effect of Stacking Conditions on Performance of a Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
689
696
.10.1007/s12206-017-0120-6
25.
Yao
,
H.
,
Wu
,
D.
,
Cao
,
L.
, and
Wu
,
P.
,
2019
, “
Numerical Simulation of Flow Field in Centrifugal Pump With High Resistance to Cavitation
,”
Fan Technol.
,
61
(
6
), pp.
10
17
.10.16492/j.fjjs.2019.06.0002
26.
Chen
,
X.
,
Cao
,
L.
,
Yan
,
P.
,
Wu
,
P.
, and
Wu
,
D.
,
2017
, “
Effect of Meridional Shape on Performance of Axial-Flow Fan
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5141
5151
.10.1007/s12206-017-1008-1
You do not currently have access to this content.