The problem of stage design of axial flow gas turbines has been formulated as a nonlinear mathematical programming problem with the objective of minimizing aerodynamic losses and mass of the stage. The aerodynamic as well as mechanical constraints are considered in the problem formulation. A method of evaluating the objective function and constraints of the problem is presented in Part I of this paper. The optimization problem is solved by using the interior penalty function method in which the Davidon-Fletcher-Powell variable metric unconstrained minimization technique with cubic interpolation method of one dimensional minimization is employed. Problems involving the optimization of efficiency and/or mass of the stage have been solved numerically in Part II of the paper. The results of sensitivity analysis conducted about the optimum point have also been reported.

This content is only available via PDF.
You do not currently have access to this content.