It is vital to estimate the temperature effectiveness and pressure loss of the regenerator accurately when designing a gas turbine engine because these characteristics basically determine the size, weight, and fuel consumption of the regenerative gas turbine engine. In operation of an actual engine, regenerators often fail to attain the characteristics predicted by conventional methods, because there are many performance-reducing irregularities such as the nonuniform velocity distribution of gases flowing into the core. In this paper, a prediction method that is based on data from actual engine tests is examined as a way to predict regenerator temperature effectiveness and pressure losses when there are causes for deterioration of these characteristics. This method resulted in a system, taking the deterioration of these characteristics into consideration as they occur in an actual engine, that represents temperature effectiveness and pressure loss as the function of core specifications such as the core size and the core matrix. This prediction method was then used to predict the regenerator characteristics of actual engines with more than satisfactory results (the accuracy is ±1.25 percent for temperature effectiveness and ±4 percent for pressure loss).

This content is only available via PDF.
You do not currently have access to this content.