Since the Kyoto conference, there is a broad consensus that the human emission of greenhouse gases, mainly CO2, has to be reduced. In the power generation sector, there are three main alternatives that are currently studied worldwide. Among them oxy-fuel cycles with internal combustion with pure oxygen are a very promising technology. Within the European project ENCAP (enhanced CO2 capture) the benchmarking of a number of novel power cycles with CO2 capture was carried out. Within the category oxy-fuel cycles, the Graz Cycle and the semiclosed oxy-fuel combustion combined cycle (SCOC-CC) both achieved a net efficiency of nearly 50%. In a second step, a qualitative comparison of the critical components was performed according to their technical maturity. In contrast to the Graz Cycle, the study authors claimed that no major technical barriers would exist for the SCOC-CC. In this work, the ENCAP study is repeated for the SCOC-CC and for a modified Graz Cycle variant as presented at the ASME IGTI Conference 2006. Both oxy-fuel cycles are thermodynamically investigated based on common assumptions agreed upon with the industry in previous work. The calculations showed that the high-temperature turbine of the SCOC-CC plant needs a much higher cooling flow supply due to the less favorable properties of the working fluid. A layout of the main components of both cycles is further presented, which shows that both cycles rely on the new designs of the high-temperature turbine and the compressors. The SCOC-CC compressor needs more stages due to a lower rotational speed but has a more favorable operating temperature. In general, all turbomachines of both cycles show similar technical challenges and are regarded as feasible.

2.
3.
Franco
,
F.
,
Mina
,
T.
,
Woolatt
,
G.
,
Rost
,
M.
, and
Bolland
,
O.
, 2006, “
Characteristics of Cycle Components for CO2 Capture
,”
Proceedings of the Eighth International Conference on Greenhouse Gas Control Technologies
,
Trondheim, Norway
.
4.
Sanz
,
W.
,
Jericha
,
H.
,
Luckel
,
F.
, and
Heitmeir
,
F.
, 2005, “
A Further Step Towards a Graz Cycle Power Plant for CO2 Capture
,”
ASME Turbo Expo 2005
,
Reno-Tahoe, USA
, ASME Paper No. GT2005-68456.
5.
Jericha
,
H.
,
Sanz
,
W.
, and
Göttlich
,
E.
, 2006, “
Design Concept for Large Output Graz Cycle Gas Turbines
,”
ASME Turbo Expo 2006
,
Barcelona, Spain
, ASME Paper No. GT2006-90032.
6.
SimTech Simulation Technology
, 2003, “
IPSEpro Overview
,” http://www.simtechnology.com/IPSEprohttp://www.simtechnology.com/IPSEpro
7.
Wagner
,
W.
, and
Kruse
,
A.
, 1998, “
Properties of Water and Steam
,”
Springer-Verlag
Berlin
.
8.
Span
,
R.
, and
Wagner
,
W.
, 1996, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100K at Pressures up to 800MPa
,”
J. Phys. Chem. Ref. Data
0047-2689,
25
(
6
), pp.
1509
1596
.
9.
Jericha
,
H.
,
Lukasser
,
A.
, and
Gatterbauer
,
W.
, 2000, “
Der ‘Graz Cycle’ für Industriekraftwerke gefeuert mit Brenngasen aus Kohle- und Schwerolvergasung
,” (in German),
VDI Conference
,
Essen, Germany
, VDI Berichte 1566.
10.
Sanz
,
W.
,
Jericha
,
H.
,
Moser
,
M.
, and
Heitmeir
,
F.
, 2004, “
Thermodynamic and Economic Investigation of an Improved Graz Cycle Power Plant for CO2 Capture
,”
ASME Turbo Expo 2004
,
Vienna, Austria
, ASME Paper No. GT2004-53722
[2005,
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
765
772
].
11.
Jordal
,
K.
,
Bolland
,
O.
, and
Klang
,
A.
, 2003, “
Effects of Cooled Gas Turbine Modelling for the Semi-Closed O2∕CO2 Cycle With CO2 Capture
,”
ASME Turbo Expo 2003
,
Atlanta, USA
, ASME Paper No. 2003-GT-38067.
12.
Louis
,
J. F.
, 1977, “
Systematic Studies of Heat Transfer and Film Cooling Effectiveness
,” AGARD Report No. CP 229.
13.
Jericha
,
H.
, 1985, “
Efficient Steam Cycles With Internal Combustion of Hydrogen and Stoichiometric Oxygen for Turbines and Piston Engines
,”
CIMAC Conference Paper
,
Oslo, Norway
.
14.
Jericha
,
H.
,
Sanz
,
W.
,
Woisetschläger
,
J.
, and
Fesharaki
,
M.
, 1995, “
CO2-Retention Capability of CH4∕O2-Fired Graz Cycle
,”
CIMAC Conference Paper
,
Interlaken, Switzerland
.
15.
Jericha
,
H.
, and
Fesharaki
,
M.
, 1995, “
The Graz Cycle—1500°C Max Temperature Potential H2–O2 Fired CO2 Capture With CH4–O2 Firing
,”
ASME Cogen-Turbo Power Conference
,
Vienna, Austria
, ASME Paper No. 95-CTP-79.
16.
Jericha
,
H.
, and
Göttlich
,
E.
, 2002, “
Conceptual Design for an Industrial Prototype Graz Cycle Power Plant
,”
ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, ASME Paper No. 2002-GT-30118.
17.
Jericha
,
H.
,
Göttlich
,
E.
,
Sanz
,
W.
, and
Heitmeir
,
F.
, 2003, “
Design Optimisation of the Graz Cycle Prototype Plant
,”
ASME Turbo Expo 2003
,
Atlanta, USA
, ASME Paper No. 2003-GT-38120
[2004,
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
733
740
].
18.
Heitmeir
,
F.
,
Sanz
,
W.
,
Göttlich
,
E.
, and
Jericha
,
H.
, 2003, “
The Graz Cycle—A Zero Emission Power Plant of Highest Efficiency
,”
XXXV Kraftwerkstechnisches Kolloquium
,
Dresden, Germany
.
19.
Jericha
,
H.
,
Sanz
,
W.
,
Pleringer
,
P.
,
Göttlich
,
E.
, and
Errol
,
P.
, 2004, “
Konstruktion der ersten Stufe der HTT-Gasturbine für den Graz Cycle
” (in German),
VDI Tagung, Stationäre Gasturbinen: Fortschritte und Betriebserfahrungen
,
Leverkusen, Germany
, VDI Berichte 1857.
20.
Jericha
,
H.
, and
Sanz
,
W.
, 2001, “
Warmekraftanlagen mit Verbrennung von Kohlenwasserstoffen mit reinem Sauerstoff zur Stromerzeugung bei Rückhaltung von Kohlendioxyd
” (in German), Austrian Patent No. AT 409 162 B.
21.
Göttlich
,
E.
,
Innocenti
,
L.
,
Vacca
,
A.
,
Sanz
,
W.
,
Woisetschläger
,
J.
,
Facchini
,
B.
,
Jericha
,
H.
, and
Rossi
,
E.
, 2004, “
Measurement and Simulation of a Transonic Innovative Cooling System (ICS) for High-Temperature Transonic Gas Turbine Stages
,”
ASME Turbo Expo 2004
,
Vienna
, ASME Paper No. GT2004-53712.
22.
Sanz
,
W.
,
Jericha
,
H.
,
Bauer
,
B.
, and
Göttlich
,
E.
, 2007, “
Qualitative and Quantitative Comparison of Two Promising Oxy-Fuel Power Cycles for CO2 Capture
,”
ASME Turbo Expo 2007
,
Montreal, Canada
, ASME Paper No. GT2007-27375.
23.
IEA
, 2004, “
Prospects for CO2 Capture and Storage
,”
IEA/OECD
, Paris, France.
24.
Jericha
,
H.
,
Sanz
,
W.
, and
Göttlich
,
E.
, 2006, “
Gasturbine mit CO2-Rückhaltung—490MW (System Graz Cycle)
” (in German),
VDI Tagung, Stationäre Gasturbinen: Fortschritte und Betriebserfahrungen
,
Leverkusen, Germany
.
25.
Hennecke
,
D. K.
, 1997, “
Transsonik-Verdichter-Technologien für stationäre Gasturbinen und Flugtriebwerke
” (in German),
Festschrift zum Jubiläum 100 Jahre Turbomaschinen TU-Darmstadt
,
TU-Darmstadt
,
Darmstadt, Germany
.
26.
König
,
P.
, and
Rossmann
,
A.
, 1999,
Ratgeber für Gasturbinenbetreiber
(in German),
Vulkan-Verlag
,
Essen
.
27.
Göttlicher
,
G.
, 1999, “
Energetik der Kohlendioxidrückhaltung in Kraftwerken
” (in German), Fortschritt-Berichte VDI, Reihe 6, Energietechnik, Nr. 421.
28.
Anderson
,
R. E.
, and
Bischoff
,
R. W.
, 2006, “
Durability and Reliability Demonstration of a Near-Zero-Emission Gas-Fired Power Plant
,” PIER Final Project report (www.cleanenergystems.comwww.cleanenergystems.com).
29.
Hustad
,
C.-W.
,
Tronstad
,
I.
,
Anderson
,
R. E.
,
Pronske
,
K. L.
, and
Viteri
,
F.
, 2005, “
Optimization of Thermodynamically Efficient Nominal 40MW Pilot and Demonstration Power Plant in Norway
,”
ASME Turbo Expo 2005
,
Reno-Tahoe, USA
, ASME Paper No. GT2005-68640.
31.
Simmons
,
H.
, 2005, “
The Importance of Turbo Expo
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
127
(
12
), p.
18
.
You do not currently have access to this content.