Abstract
The objective of this paper is to model the steady-state and dynamic operation of a pebble-bed-type high temperature gas-cooled reactor power plant using a system computational fluid dynamics (CFD) approach. System CFD codes are 1D network codes with embedded 2D or even 3D discretized component models that provide a good balance between accuracy and speed. In the method presented in this paper, valves, orifices, compressors, and turbines are modeled as lumped or 0D components, whereas pipes and heat exchangers are modeled as 1D discretized components. The reactor is modeled as 2D discretized system. A point kinetics neutronic model will predict the heat release in the reactor. Firstly, the layout of the power conversion system is discussed together with the major plant parameters. This is followed by a high level description of the system CFD approach together with a description of the various component models. The code is used to model the steady-state operation of the system. The results are verified by comparing them with detailed cycle analysis calculations performed with another code. The model is then used to predict the net power delivered to the shaft over a wide range of speeds from zero to full speed. This information is used to specify parameters for a proportional-integral-derivative controller that senses the speed of the power turbine and adjusts the generator power during the startup of the plant. The generator initially acts as a motor that drives the shaft and then changes over to a generator load that approaches the design point value as the speed of the shaft approaches the design speed. A full startup simulation is done to demonstrate the behavior of the plant during startup. This example demonstrates the application of a system CFD code to test control strategies. A load rejection example is considered where the generator load is suddenly dropped to zero from a full load condition. A controller senses the speed of the low pressure compressor/low pressure turbine shaft and then adjusts the opening of a bypass valve to keep the speed of the shaft constant at . The example demonstrates how detailed information on critical parameters such as turbine and reactor inlet temperatures, maximum fuel temperature, and compressor surge margin can be obtained during operating transients. System CFD codes is a powerful design tool that is indispensable in the design of complex power systems such as gas-cooled nuclear power plants.