Two power plant schemes that reduce CO2 emission and employ natural gas reforming were analyzed and discussed. The first one integrates natural gas reforming technology for efficiency improvement with an oxy-fuel combined power system (OXYF-REF), with water as the main work fluid. The reforming heat is obtained from the available turbine exhaust heat, and the produced syngas is used as fuel with oxygen as the oxidizer. The turbine working fluid can expand down to a vacuum, producing a high-pressure ratio and thus more net work. The second system integrates natural gas reforming in a precombustion decarbonization scheme using chemical absorption technology for the CO2 removal (PCD-REF). The gas turbine is the conventional air-based one with compressor intercooling. Supplementary combustion is employed to elevate the turbine exhaust temperature and thus achieve a much higher methane conversion rate (96.9%). Both systems involve internal heat recuperation from gas turbine exhausts, and particular attention has been paid to the integration of the heat recovery chain to reduce the related exergy destruction. The systems are simulated and their thermal efficiency, overall and component exergy losses, and CO2 removal capacity are compared. The OXYF-REF system has a higher energy efficiency, of 51.4%, and higher CO2 removal, but the product CO2 has lower purity, of 84%. The PCD-REF system has a thermal efficiency of 46%, the captured CO2 is 99% pure, and the CO2 specific emission is 58.5gkWh.

1.
Lozza
,
G.
, and
Chiesa
,
P.
, 2002, “
Natural Gas Decarbonization to Reduce CO2 Emission From Combined Cycles—Part I: Partial Oxidation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
82
88
.
2.
Corradetti
,
A.
, and
Desideri
,
U.
, 2005, “
Analysis of Gas-Steam Combined Cycles With Natural Gas Reforming and CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
545
552
.
3.
Chiesa
,
P.
, and
Consonni
,
S.
, 2000, “
Natural Gas Fired Combined Cycles With Low CO2 Emissions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
429
436
.
4.
Desideri
,
U.
, and
Paolucci
,
A.
, 1999, “
Performance Modeling of a Carbon Dioxide Removal System for Power Plants
,”
Energy Convers. Manage.
0196-8904,
40
, pp.
1899
1915
.
5.
Mathieu
,
P.
and
Nihart
,
R.
, 1999, “
Zero-Emission MATIANT Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
116
120
.
6.
Mathieu
,
P.
and
Nihart
,
R.
, 1999, “
Sensitivity Analysis of the MATIANT Cycle
,”
Energy Convers. Manage.
0196-8904,
40
, pp.
1687
1700
.
7.
Yantovski
,
E. I.
,
Zvagolsky
,
K. N.
, and
Gavrilenko
,
V. A.
, 1996, “
The COOPERATE—Demo Power Cycle
,”
Energy Convers. Manage.
0196-8904,
37
(
6–8
),
861
864
.
8.
Yantovski
,
E. I.
, 1996, “
Stack Downward Zero Emission Fuel-Fired Power Plants Concept
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
867
877
.
9.
Staicovici
,
M. D.
, 2002, “
Further Research Zero CO2 Emission Power Production: The “COOLENERG” Process
,”
Energy
0360-5442,
27
, pp.
831
844
.
10.
Bolland
,
O.
, and
Mathieu
,
P.
, 1998, “
Comparison of Two CO2 Removal Options in Combined Cycle Power Plants
,”
Energy Convers. Manage.
0196-8904,
39
, pp.
1653
1663
.
11.
Anderson
,
R.
,
Brandt
,
H.
,
Doyle
,
S.
,
Pronske
,
K.
, and
Viteri
,
F.
, 2003, “
Power Generation With 100% Carbon Capture and Sequestration
,”
Second Annual Conference on Carbon Sequestration
,
Alexandria, VA
.
12.
Marin
,
O.
,
Bourhis
,
Y.
,
Perrin
,
N.
,
Zanno
,
P. D.
,
Viteri
,
F.
, and
Anderson
,
R.
, 2003, “
High Efficiency, Zero Emission Power Generation Based on a High-Temperature Steam Cycle
,”
28th International Technical Conference on Coal Utilization and Fuel Systems
,
Clearwater
,
FL
.
13.
Jericha
,
H.
,
Gottlich
,
E.
,
Sanz
,
W.
, and
Heitmeir
,
F.
, 2004, “
Design Optimization of the Graz Cycle Prototype Plant
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
733
740
.
14.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
,
Smith
,
J. R.
, and
Brandt
,
H.
, 2004, “
Thermodynamic Analysis of Zero-Atmospheric Emissions Power Plant
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
pp.2
8
.
15.
Zhang
,
N.
and
Lior
,
N.
, 2006, “
A Novel Near-Zero CO2 Emission Thermal Cycle With LNG Cryogenic Exergy Utilization
,”
Energy
0360-5442,
31
, pp.
1666
1679
.
16.
Zhang
,
N.
and
Lior
,
N.
, 2006, “
Proposal and Analysis of a Novel Zero CO2 Emission Cycle With Liquid Natural Gas Cryogenic Exergy Utilization
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
81
91
.
17.
Ishida
,
M.
, and
Jin
,
H.
, 1997, “
CO2 Recovery in a Novel Power Plant System With Chemical-Looping Combustion
,”
Energy Convers. Manage.
0196-8904,
38
(
19
), pp.
187
192
.
18.
Ishida
,
M.
, and
Jin
,
H.
, 1994, “
A New Advanced Power-Generation System Using Chemical-Looping Combustion
,”
Energy
0360-5442,
19
, pp.
415
422
.
19.
Naqvi
,
R.
, and
Bolland
,
O.
, 2005, “
Off-Design Evaluation of a Natural Gas Fired Chemical Looping Combustion Combined Cycle With CO2 Capture
,”
Proceedings of ECOS2005
,
Trondheim, Norway
, pp.
827
834
.
20.
Griffin
,
T.
,
Sundkvist
,
S. G.
,
Asen
,
K.
, and
Bruun
,
T.
, 2005, “
Advanced Zero Emissions Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
81
85
.
21.
Moller
,
B. F.
,
Torisson
,
T.
,
Assadi
,
M.
,
Sundkvist
,
S. G.
,
Sjodin
,
M.
,
Klang
,
A.
,
Asen
,
K. I.
, and
Wilhelmsen
,
K.
, 2005, “
AZEP Gas Turbine Combined Cycle Power Plants—Thermo-Economic Analysis
,”
Proceedings of ECOS2005
,
Trondheim, Norway
, pp.
819
826
.
22.
Kvamsdal
,
H. M.
,
Jordal
,
K.
, and
Bolland
,
O.
, 2007, “
A Quantitative Comparison of Gas Turbine Cycles With CO2 Capture
,”
Energy
0360-5442,
32
, pp.
10
24
.
23.
Fiaschi
,
D.
,
Lombardi
,
L.
, and
Tapinassi
,
L.
, 2003, “
The Recuperative Auto Thermal Reforming and Recuperative Reforming Gas Turbine Power Cycles With CO2 Removal—Part I: The Recuperative-Auto Thermal Reforming Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
933
939
.
24.
Fiaschi
,
D.
,
Lombardi
,
L.
, and
Tapinassi
,
L.
, 2004, “
The Recuperative Auto Thermal Reforming and Recuperative Reforming Gas Turbine Power Cycles With CO2 Removal—Part II: The Recuperative Reforming Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
62
68
.
25.
Lozza
,
G.
, and
Chiesa
,
P.
, 2002, “
Natural Gas Decarbonization to Reduce CO2 Emission From Combined Cycles—Part II: Steam-Methane Reforming
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
89
95
.
26.
Adelman
,
S. T.
,
Hoffman
,
M. A.
, and
Baughn
,
J. W.
, 1995, “
A Methane-Steam Reformer for a Basic Chemically Recuperated Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
16
23
.
27.
Abdallah
,
H.
,
Facchini
,
B.
,
Danes
,
F.
, and
De Ruyck
,
J.
, 1999, “
Exergetic Optimization of Intercooled Reheat Chemically Recuperated Gas Turbine
,”
Energy Convers. Manage.
0196-8904,
40
, pp.
1679
1686
.
28.
Kesser
,
K. F.
,
Hoffman
,
M. A.
, and
Baughn
,
J. W.
, 1994, “
Analysis of a Basic Chemically Recuperated Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
277
284
.
29.
ASPEN PLUS®, Aspen Technology, Inc., Version 11.1, http://www.aspentech.com/http://www.aspentech.com/, Aspen Physical Property System, Physical Property Methods and Models 11.1, Sept. 2001, Aspen Technology, Inc., Cambridge, MA.
30.
Zhang
,
N.
, and
Lior
,
N.
, 2006, “
Configuration Analysis of Oxy-Fuel Cycles With Natural Gas Reforming and CO2 Capture
,”
Proceedings of ECOS2006
,
Crete
,
Greece
, pp.
1619
1628
.
31.
Ishida
,
M.
, and
Kawamura
,
K.
, 1982, “
Energy and Exergy Analysis of a Chemical Process System With Distributed Parameters Based on the Energy-Direction Factor Diagram
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
21
, pp.
690
695
.
32.
Dunbar
,
W. R.
, and
Lior
,
N.
, 1994, “
Sources of Combustion Irreversibility
,”
Combust. Sci. Technol.
0010-2202,
103
, pp.
41
61
.
33.
Davison
,
J.
, 2007, “
Performance and Cost of Power Plants With Capture and Storage of CO2
,”
Energy
0360-5442,
32
, pp.
1163
1176
.
34.
Buhre
,
B. J. P.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
, 2005, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust. Sci.
0360-1285,
31
, pp.
283
307
.
35.
Pronske
,
K.
,
Trowsdale
,
L.
,
Macadam
,
S.
,
Viteri
,
F.
,
Bevc
,
F.
, and
Horazak
,
D.
, 2006, “
An Overview of Turbine and Combustor Development for Coal-Based Oxy-Syngas System
,” ASME Paper No. GT2006-90816.
36.
Damen
,
K.
,
Troost
,
M.
,
Faaij
,
A.
, and
Turkenburg
,
W.
, 2006, “
A Comparison of Electricity and Hydrogen Production Systems With CO2 Capture and Storage. Part A: Review and Selection of Promising Conversion and Capture Technologies
,”
Prog. Energy Combust. Sci.
0360-1285,
31
, pp.
215
246
.
37.
Hazeldine
,
P.
, and
Baker
,
B. A.
, 2007, “
Utilization of Alloy 693 in Metal Dusting Environments
,”
NACE International Corrosion 2007 Conference and Expo
,
Nashville
,
TN
, Mar. 11–15, Paper No. 07430.
You do not currently have access to this content.