Least-squares-based methods are very popular in the jet engine community for health monitoring purposes. In most practical situations, the number of health parameters exceeds the number of measurements, making the estimation problem underdetermined. To address this issue, regularization adds a penalty term on the deviations of the health parameters. Generally, this term imposes a quadratic penalization on these deviations. A side effect of this technique is a relatively poor isolation capability. The latter feature can be improved by recognizing that abrupt faults impact at most one or two component(s) simultaneously. This translates mathematically into the search for a sparse solution. The present contribution reports the development of a fault isolation tool favoring sparse solutions. It is very efficiently implemented in the form of a quadratic program. As a validation procedure, the resulting algorithm is applied to a variety of fault conditions simulated with a generic commercial turbofan model.

1.
Volponi
,
A. J.
, 2003,
Foundation of Gas Path Analysis (Part I and II)
(
von Karman Institute Lecture Series
),
von Karman Institute
,
Rhode-Saint-Genèse, Belgium
.
2.
Marinai
,
L.
,
Probert
,
D.
, and
Singh
,
R.
, 2004, “
Prospects for Aero Gas-Turbine Diagnostics: A Review
,”
Appl. Energy
0306-2619,
79
, pp.
109
126
.
3.
Doel
,
D. L.
, 1994, “
An Assessment of Weighted-Least-Squares-Based Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
336
373
.
4.
Volponi
,
A.
,
DePold
,
H.
,
Ganguli
,
R.
, and
Daguang
,
C.
, 2003, “
The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostic: A Comparative Study
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
917
924
.
5.
Wallin
,
M.
, and
Grönstedt
,
T.
, 2004, “
A Comparative Study of Genetic Algorithms and Gradient Methods for RM12 Turbofan Engine Diagnostics and Performance Estimation
,” ASME Paper No. GT2004-53591.
6.
Ogaji
,
S. O. T.
, and
Singh
,
R.
, 2002, “
Advanced Engine Diagnostics Using Artificial Neural Networks
,”
IEEE International Conference on Artificial Intelligence Systems, ICAIS
, pp.
236
241
.
7.
Romessis
,
C.
, and
Mathioudakis
,
K.
, 2006, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
1
), pp.
64
72
.
8.
Eustace
,
R.
, 2008, “
A Real-World Application of Fuzzy Logic and Influence Coefficients for Gas Turbine Performance Diagnostics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
061601
.
9.
Provost
,
M. J.
, 1994, “
The Use of Optimal Estimation Techniques in the Analysis of Gas Turbines
,” Ph.D. thesis, Cranfield University, Bedforshire, UK.
10.
Grodent
,
M.
, and
Navez
,
A.
, 2003,
A Robust Parameter Identification Approach for Engine Health Monitoring and Diagnosis
(
von Karman Institute Lecture Series
),
von Karman Institute
,
Rhode-Saint-Genèse, Belgium
.
11.
Borguet
,
S.
, and
Léonard
,
O.
, 2008, “
A Sensor-Fault-Tolerant Diagnosis Tool Based on a Quadratic Programming Approach
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
021605
.
12.
Donoho
,
D.
, 2006, “
Compressed Sensing
,”
IEEE Trans. Inf. Theory
0018-9448,
52
(
4
), pp.
1289
1306
.
13.
Larsson
,
E.
, and
Selen
,
Y.
, 2007, “
Linear Regression With a Sparse Parameter Vector
,”
IEEE Trans. Signal Process.
1053-587X,
55
(
2
), pp.
451
460
.
14.
Malioutov
,
D.
,
Cetin
,
M.
, and
Willsky
,
A.
, 2005, “
A Sparse Signal Reconstruction Perspective for Source Localization With Sensor Arrays
,”
IEEE Trans. Signal Process.
1053-587X,
53
(
8
), pp.
3010
3022
.
15.
Jokar
,
S.
, and
Pfetsch
,
M.
, 2007, “
Exact and Approximate Sparse Solutions of Underdetermined Linear Equations
,” Zentrum für Informationstechnik, Berlin, ZIB Report No. 07-05.
16.
Fuchs
,
J. J.
, 2004, “
Recovery of Exact Sparse Representations in the Presence of Noise
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
, Vol.
2
, pp.
533
536
.
17.
Fuchs
,
J. J.
, 2004, “
On Sparse Representations in Arbitrary Redundant Basis
,”
IEEE Trans. Inf. Theory
0018-9448,
50
, pp.
1341
1344
.
18.
Tropp
,
J.
, 2004, “
Just Relax: Convex Programming Methods for Subset Selection and Sparse Approximation
,” ICES, University of Texas, Report No. 0404.
19.
Fuchs
,
J. J.
, 2001, “
On the Application of the Global Matched Filter to DOA Estimation With Uniform Circular Arrays
,”
IEEE Trans. Signal Process.
1053-587X,
49
(
4
), pp.
702
709
.
20.
Fletcher
,
R.
, 2000,
Practical Methods of Optimization
,
Wiley
,
New York
.
21.
Neumaier
,
A.
, 1998, MINQ—General Definite and Bound Constrained Indefinite Quadratic Programming, http://www.mat.univie.ac.at/neum/software/minqhttp://www.mat.univie.ac.at/neum/software/minq.
22.
Stamatis
,
A.
,
Mathioudakis
,
K.
,
Ruiz
,
J.
, and
Curnock
,
B.
, 2001, “
Real-Time Engine Model Implementation for Adaptive Control and Performance Monitoring of Large Civil Turbofans
,” ASME Paper No. 2001-GT-0362.
23.
Simon
,
D. L.
,
Bird
,
J.
,
Davison
,
C.
,
Volponi
,
A. J.
, and
Iverson
,
R. E.
, 2008, “
Benchmarking Gas Path Diagnostic Methods: A Public Approach
,” ASME Paper No. GT2008-51360.
24.
Borguet
,
S.
, and
Léonard
,
O.
, 2009, “
A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Performance Monitoring
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
, p.
011601
.
You do not currently have access to this content.