Cavitation and turbulence inside a diesel injector play a critical role in primary spray breakup and development processes. The study of cavitation in realistic injectors is challenging, both theoretically and experimentally, since the associated two-phase flow field is turbulent and highly complex, characterized by large pressure gradients and small orifice geometries. We report herein a computational investigation of the internal nozzle flow and cavitation characteristics in a diesel injector. A mixture based model in FLUENT V6.2 software is employed for simulations. In addition, a new criterion for cavitation inception based on the total stress is implemented, and its effectiveness in predicting cavitation is evaluated. Results indicate that under realistic diesel engine conditions, cavitation patterns inside the orifice are influenced by the new cavitation criterion. Simulations are validated using the available two-phase nozzle flow data and the rate of injection measurements at various injection pressures (800–1600 bar) from the present study. The computational model is then used to characterize the effects of important injector parameters on the internal nozzle flow and cavitation behavior, as well as on flow properties at the nozzle exit. The parameters include injection pressure, needle lift position, and fuel type. The propensity of cavitation for different on-fleet diesel fuels is compared with that for n-dodecane, a diesel fuel surrogate. Results indicate that the cavitation characteristics of n-dodecane are significantly different from those of the other three fuels investigated. The effect of needle movement on cavitation is investigated by performing simulations at different needle lift positions. Cavitation patterns are seen to shift dramatically as the needle lift position is changed during an injection event. The region of significant cavitation shifts from top of the orifice to bottom of the orifice as the needle position is changed from fully open (0.275 mm) to nearly closed (0.1 mm), and this behavior can be attributed to the effect of needle position on flow patterns upstream of the orifice. The results demonstrate the capability of the cavitation model to predict cavitating nozzle flows in realistic diesel injectors and provide boundary conditions, in terms of vapor fraction, velocity, and turbulence parameters at the nozzle exit, which can be coupled with the primary breakup simulation.

1.
Franc
,
J. P.
,
Avellan
,
F.
,
Bela-Hadji
,
B.
,
Billard
,
J. Y.
,
Briancon-Marjollet
,
L.
,
Frechou
,
D.
,
Fruman
,
D. H.
,
Karimi
,
A.
,
Kueny
,
J. L.
, and
Michel
,
J. M.
, 1995,
La Cavitation
,
Presses Universitaries de Grenoble, Collection Grenoble Sciences
,
France
.
2.
Han
,
J. S.
,
Lu
,
P. H.
,
Xie
,
X. B.
,
Lai
,
M. C.
, and
Henein
,
N. A.
, 2002, “
Investigation of Diesel Spray Break Up and Development for Different Nozzle Geometries
,” SAE Paper No. 2002-01-2775.
3.
Giannadakis
,
E.
, 2005, “
Modeling of Cavitation in Automotive Fuel Injector Nozzles
,” Ph.D. thesis, Imperial College, London.
4.
Schmidt
,
D. P.
,
Rutland
,
C. J.
,
Corrandini
,
M. L.
,
Roosen
,
P.
, and
Genge
,
O.
, 1999, “
Cavitation in 2-D Asymmetric Nozzles
,” SAE Paper No. 1999-01-0518.
5.
Wallis
,
G. B.
, 1969,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
6.
Avva
,
R. K.
,
Singhal
,
A.
, and
Gibson
,
D. H.
, 1995, “
An Enthalpy Based Model of Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
226
, pp.
63
70
.
7.
Habchi
,
C.
,
Dumont
,
N.
, and
Simonin
,
O.
, 2003, “
CAVIF: A 3D Code for the Modeling of Cavitating Flows in Diesel Injectors
,”
ICLASS Sorrento 2003
, Paper No. 95.
8.
Ning
,
W.
,
Reitz
,
R. D.
,
Diwakar
,
R.
, and
Lippert
,
A. M.
, 2008, “
A Numerical Investigation of Nozzle Geometry and Injection Condition Effects on Diesel Fuel Injector Flow Physics
,” SAE Paper No. 2008-01-0936.
9.
Li
,
M.
,
Mulemane
,
A.
,
Lai
,
M. C.
, and
Poola
,
R.
, 2005, “
Simulating Diesel Injectors Based on Different Cavitation Modeling Approaches
,”
ASME
Paper No. ICES2005-1030.
10.
Chen
,
Y.
, and
Heister
,
S. D.
, 1995, “
Two-Phase Modeling of Cavitated Flows
,”
Comput. Fluids
0045-7930,
24
, pp.
799
806
.
11.
Martynov
,
S.
, 2005, “
Numerical Simulation of Cavitation Process in Diesel Fuel Injectors
,” Ph.D. thesis, University of Brighton, Brighton.
12.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
617
624
.
13.
Tatschl
,
R.
,
Sarre
,
C. V. K.
,
Alajbegovic
,
A.
, and
Winklhofer
,
E.
, 2000, “
Diesel Spray Break-Up Modeling Including Multi-Dimensional Cavitating Nozzle Flow Effects
,”
16th ILASS Conference-Europe
.
14.
Chiavola
,
O.
,
Palmieri
,
F.
, 2006, “
Coupling Codes for Nozzle Flow Modeling in Diesel Injection System
,”
ASME
Paper No. ICES2006-1414.
15.
Dirke
,
M. V.
,
Krautter
,
A.
,
Ostertag
,
J.
,
Mennicken
,
M.
, and
Badock
,
C.
, 1999, “
Simulation of Cavitating Flows in Diesel Injectors
,”
Oil Gas Sci. Technol.
,
54
, pp.
223
226
.
16.
Giannadakis
,
E.
,
Gavaises
,
M.
,
Roth
,
H.
, and
Arcoumanis
,
C.
, 2004, “
Cavitation Modeling in Single-Hole Diesel Injector Based on Eulerian-Lagrangian Approach
,”
Proceedings of the THIESEL International Conference on Thermo- and Fluid Dynamic Process in Diesel Engines
, Valencia, Spain.
17.
Winklhofer
,
E.
,
Kull
,
E.
,
Kelz
,
E.
, and
Morozov
,
A.
, 2001, “
Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments Under Cavitation Conditions
,”
ILASS Europe 2001
.
18.
Payri
,
R.
,
Margot
,
X.
, and
Salvador
,
F. J.
, 2002, “
A Numerical Study of the Influence of Diesel Nozzle Geometry on the Inner Cavitating Flow
,” SAE Paper No. 2002-01-0215.
19.
Soteriou
,
C.
, and
Andrews
,
R.
, 1998, “
Diesel Injection-Laser Light Sheet Illumination of the Development of Cavitation in Orifices
,”
IMechE Conf. Trans.
1356-1448,
C529
(
018
), pp.
137
158
.
20.
Arcoumanis
,
C.
,
Flora
,
H.
,
Gavaises
,
M.
, and
Badami
,
M.
, 2000, “
Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles
,” SAE Paper No. 2000-01-1249.
21.
Roth
,
H.
,
Giannadakis
,
E.
,
Gavaises
,
M.
,
Arcoumanis
,
C.
,
Omae
,
K.
,
Sakata
,
I.
,
Nakamura
,
M.
, and
Yanagihara
,
H.
, 2005, “
Effect of Multi-Injection Strategy on Cavitation Development in Diesel Injector Nozzle Holes
,” SAE Paper No. 2005-01-1237.
22.
Benajes
,
J.
,
Pastor
,
J. V.
,
Payri
,
R.
, and
Plazas
,
A. H.
, 2004, “
Analysis of the Influence of Diesel Nozzle Geometry in the Injection Rate Characteristics
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
63
71
.
23.
Badock
,
C.
,
Wirth
,
R.
,
Fath
,
A.
, and
Leipertz
,
A.
, 1999, “
Investigation of Cavitation in Real Size Diesel Injection Nozzles
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
538
544
.
24.
Chaves
,
H.
,
Knapp
,
M.
, and
Kubitezek
,
A.
, 1995, “
Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles
,” SAE Paper No. 950290.
25.
Payri
,
F.
,
Bermudez
,
V.
,
Payri
,
R.
, and
Salvador
,
F. J.
, 2004, “
The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles
,”
Fuel
0016-2361,
83
, pp.
419
431
.
26.
Ning
,
W.
,
Reitz
,
R. D.
,
Diwakar
,
R.
, and
Lippert
,
A. M.
, 2007, “
Development of a Next Generation Spray and Atomization Model Using an Eulerian-Lagrangian Methodology
,”
20th ILASS Americas 2007
.
27.
Ibrahim
,
A. A.
, and
Jog
,
M. A.
, 2007, “
Nonlinear Breakup Model for a Liquid Sheet Emanating From a Pressure-Swirl Atomizer
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
945
953
.
28.
Gavaises
,
M.
, and
Arcoumanis
,
C.
, 2001, “
Modeling of Sprays From High-Pressure Swirl Atomizers
,”
Int. J. Engine Res.
1468-0874,
2
(
2
), pp.
95
117
.
29.
FLUENT V6.2 Documentation.
30.
Jia
,
M.
,
Hou
,
D.
,
Li
,
J.
,
Xie
,
M.
, and
Liu
,
H.
, 2007, “
A Micro-Variable Circular Orifice Fuel Injector for HCCI-Conventional Engine Combustion-Part 1 Numerical Simulation of Cavitation
,” SAE Paper No. 2007-01-0249.
31.
Joseph
,
D. D.
, 1998, “
Cavitation and the State of Stress in a Flowing Liquid
,”
J. Fluid Mech.
0022-1120,
366
, pp.
367
378
.
32.
Bosch
,
W.
, 1966, “
The Fuel Rate Indicator: A New Measuring Instrument for Display of the Characteristics of Individual Injection
,” SAE Paper No. 660749.
33.
Naber
,
J. D.
, and
Siebers
,
D. L.
, 1996, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,” SAE Paper No. 960034.
34.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 1987, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Paper No. 872089.
35.
Ramirez
,
A. I.
,
Som
,
S.
,
Aggarwal
,
S. K.
,
Kastengren
,
A. L.
,
El-Hannouny
,
E.
,
Longman
,
D. E.
, and
Powell
,
C. F.
, 2008, “
Quantitative Measurement of Diesel Fuel Spray Characteristics in the Near-Nozzle Region of a Heavy Duty Multi-Hole Injector
,”
21st ILASS Americas 2008
.
36.
Mulemane
,
A.
,
Han
J. S.
,
Lu
,
P. H.
,
Yoon
,
S. J.
, and
Lai
,
M. C.
, 2004, “
Modeling Dynamic Behavior of Diesel Fuel Injection Systems
,” SAE Paper No. 2004-01-0536.
37.
Winer
,
W. O.
, and
Bair
,
S.
, 1987, “
The Influence of Ambient Pressure on the Apparent Shear Thinning of Liquid Lubricants—an Overlooked Phenomenon
,” Proceedings of the Institute of Mechanical Engineers—Tribology 50 Years On, Paper No. 190/187, pp.
395
398
.
38.
Kottke
,
P. A.
,
Bair
,
S. S.
, and
Winer
,
W. O.
, 2005, “
Cavitation in Creeping Shear Flows
,”
AIChE J.
0001-1541,
51
, pp.
2150
2170
.
39.
Dabiri
,
S.
,
Sirignano
,
W. A.
, and
Joseph
,
D. D.
, 2007, “
Cavitation in an Orifice Flow
,”
Phys. Fluids
1070-6631,
19
, p.
072112
.
40.
Padrino
,
J. C.
,
Joseph
,
D. D.
,
Funada
,
T.
,
Wang
,
J.
, and
Sirignano
,
W. A.
, 2007, “
Stress-Induced Cavitation for the Streaming Motion of a Viscous Liquid Past a Sphere
,”
J. Fluid Mech.
0022-1120,
578
, pp.
381
411
.
41.
Sarre
,
C. V. K.
,
Kong
,
S. C.
, and
Reitz
,
R. D.
, 1999, “
Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays
,” SAE Paper No. 1999-01-0912.
42.
Kastengren
,
A. L.
, and
Powell
,
C. F.
, 2007, “
Spray Density Measurements Using X-Ray Radiography
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
221
, pp.
653
662
.
43.
Bittlinger
,
G.
,
Henle
,
A.
,
Hertlein
,
D.
,
Leick
,
P.
, and
Kunz
,
T.
, 2006, “
Optische Methoden zur Bewertung der dieselmotorischen Gemischbildung und Verbrennung
,”
Fifth Conference on Diesel and Gasoline Direct Injection
, Berlin, Germany.
You do not currently have access to this content.