An unconfined strongly swirled flow is investigated for different Reynolds numbers using particle image velocimetry (PIV) and large eddy simulation (LES) with a thickened-flame (TF) model. Both reacting and nonreacting flow results are presented. In the LES-TF approach, the flame front is resolved on the computational grid through artificial thickening and the individual species transport equations are directly solved with the reaction rates specified using Arrhenius chemistry. Good agreement is found when comparing predictions with the experimental data. Also the predicted root mean square (rms) fluctuations exhibit a double-peak profile with one peak in the burnt and the other in the unburnt region. The measured and predicted heat release distributions are in qualitative agreement with each other and exhibit the highest values along the inner edge of the shear layer. The precessing vortex core (PVC) is clearly observed in both the nonreacting and reacting cases. However, it appears more axially elongated for the reacting cases and the oscillations in the PVC are damped with reactions.

1.
Lefebrve
,
A. H.
, 1999,
Gas Turbine Combustion
,
Taylor & Francis
,
Philadelphia, PA
.
2.
Syred
,
D. G.
, and
Beer
,
J. M.
, 1974, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
0010-2180,
23
, pp.
143
201
.
3.
Cheng
,
R. K.
, 2000, “
Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized by Weak Swirl
,”
Combust. Flame
0010-2180,
28
, pp.
399
405
.
4.
Schneider
,
C.
,
Dreizler
,
A.
, and
Janicka
,
J.
, 2005, “
Fluid Dynamical Analysis of Atmospheric Reacting and Isothermal Swirling Flows
,”
Flow, Turbul. Combus.
,
74
, pp.
103
127
. 1386-6184
5.
Al-Abdeli
,
Y. M.
, and
Masri
,
A. R.
, 2007, “
Turbulent Swirling Natural Gas Flames: Stability Characteristics, Unsteady Behavior and Vortex Breakdown
,”
Combust. Sci. Technol.
0010-2202,
179
, pp.
207
225
.
6.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
Edwards
,
Ann Arbor
.
7.
Hawkes
,
E.
, and
Cant
,
R.
, 2001, “
Implications of a Flame Surface Density Approach to Large Eddy Simulation of Premixed Turbulent Combustion
,”
Combust. Flame
0010-2180,
126
, pp.
1617
1629
.
8.
Williams
,
F.
, 1985,
Combustion Theory
,
Addison-Wesley
,
Reading, MA
.
9.
Peters
,
N.
, 2000,
Tubulent Combustion
,
Cambridge University Press
,
London
.
10.
Düsing
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
, 2006, “
Towards a Classification of Models for the Numerical Simulation of Premixed Combustion Based on a Generalized Regime Diagram
,”
Combust. Theory Modell.
1364-7830,
10
, pp.
105
132
.
11.
Pitsch
,
H.
, and
Duchamp de La Geneste
,
L.
, 2002, “
Large-Eddy Simulation of a Premixed Turbulent Combustion Using Level-Set Approach
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
2001
2008
.
12.
Pope
,
S. B.
, 1985, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
0360-1285,
11
, pp.
119
192
.
13.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
, 2000, “
A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion
,”
Phys. Fluids
1070-6631,
12
(
7
), pp.
1843
1863
.
14.
Chanaud
,
R. C.
, 1965, “
Observation of Oscillatory Motion in Certain Swirling Flows
,”
J. Fluid Mech.
0022-1120,
21
, pp.
111
127
.
15.
Tangirala
,
V.
,
Chen
,
R. H.
, and
Driscoll
,
J. F.
, 1987, “
Effect of Heat Release on the Recirculation Within Swirl-Stabilized Flames
,”
Combust. Sci. Technol.
0010-2202,
51
, pp.
75
95
.
16.
Broda
,
J. C.
,
Seo
,
S.
,
Santoto
,
R. J.
,
Shirhattikar
,
G.
, and
Yang
,
V.
, 1998, “
An Experimental Study of Combustion Dynamics of a Premixed Swirl Injector
,”
Proc. Combust. Inst.
1540-7489,
27
, pp.
1849
1856
.
17.
Seo
,
S.
, 1999, “
Parametric Study of Lean Premixed Combustion Instability in a Pressured Model Gas Turbine Combustor
,” Ph.D. thesis, Pennsylvania State University, University Park, PA.
18.
Huang
,
Y.
, and
Yang
,
V.
, 2005, “
Effect of Swirl on Combustion Dynamics in a Lean-Premixed Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1775
1782
.
19.
Syred
,
N.
, 2006, “
A Review of Oscillation Mechanisms and the Role of Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
32
, pp.
93
161
.
20.
Duwig
,
C.
,
Fuchs
,
L.
,
Lacarelle
,
A.
,
Beutke
,
M
,
Paschereit
,
C. O.
, 2007, “
Study of the Vortex Breakdown in a Conical Swirler Using LDV, LES and POD
,” ASME Paper No. GT2007-27006.
21.
Melling
,
A.
, 1997, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1406
1416
.
22.
Lourenco
,
L. M.
, and
Krothapalli
,
A.
, 2000, “
TRUE Resolution PIV: A Mesh-Free Second Order Accurate Algorithm
,”
Proceedings of the International Conference on Applications of Laser Fluid Mechanics
, Lisbon, Portugal.
23.
De
,
A.
,
Zhu
,
S.
,
Acharya
,
S.
, 2009, “
An Experimental and Computational Study of a Swirled Stabilized Unconfined Premixed Flame
,” ASME Paper No. GT2009-60230.
24.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
, 2004, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
0010-2180,
137
, pp.
489
505
.
25.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1989, “
Chemkin-II: A Fortran Chemical Kinetics Package for Analysis of Gas-Phase Chemical Kinetics
,” Sandia Report No. SAND 89-8009B.
26.
Kee
,
R. J.
,
Dixon-Lewis
,
G.
,
Warnats
,
J.
,
Coltrin
,
M. E.
, and
Miller
,
J. A.
, 1986, Sandia National Laboratories Technical Report No. SAND86-8246 (TRANFIT), Livermore, CA.
27.
Weiss
,
J. M.
, and
Smith
,
W. A.
, 1995, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
0001-1452,
33
, pp.
2050
2057
.
28.
Edwards
,
J. R.
, 1997, “
A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations
,”
Comput. Fluids
0045-7930,
26
, pp.
635
659
.
29.
Akselvoll
,
K.
, and
Moin
,
P.
, 1996, “
Large-Eddy Simulation of Turbulent Confined Coannular Jets
,”
J. Fluid Mech.
0022-1120,
315
, pp.
387
411
.
30.
Galpin
,
J.
,
Naudin
,
A.
,
Vervisch
,
L.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Domingo
,
P.
, 2008, “
Large-Eddy Simulation of a Fuel-Lean Premixed Turbulent Swirl Burner
,”
Combust. Flame
0010-2180,
155
, pp.
247
266
.
You do not currently have access to this content.