A method for predicting the onset of acoustically driven combustion instabilities in gas turbine combustor is examined. The basic idea is that the governing equations of the acoustic waves can be coupled with a flame heat release model and solved in the frequency domain. The paper shows that a complex eigenvalue problem is obtained that can be solved numerically by implementing the governing equations in a finite element code. This procedure allows one to identify the frequencies at which thermo-acoustic instabilities are expected and the growth rate of the pressure oscillations, at the onset of instability, when the hypothesis of linear behavior of the acoustic waves can be applied. The method can be applied virtually to any three-dimensional geometry, provided the necessary computational resources that are, anyway, much less than those required by computational fluid dynamics methods proposed for analyzing the combustion chamber under instability condition. Furthermore, in comparison with the “lumped” approach that characterizes popular acoustics networks, the proposed method allows one for much more flexibility in defining the geometry of the combustion chamber. The paper shows that different types of heat release laws, for instance, heat release concentrated in a flame sheet, as well as distributed in a larger domain, can be adopted. Moreover, experimentally or numerically determined flame transfer functions, giving the response of heat release to acoustic velocity fluctuations, can be incorporated in the model. To establish proof of concept, the method is validated at the beginning against simple test cases taken from literature. Over the frequency range considered, frequencies and growth rates both of stable and unstable eigenmodes are accurately evaluated. Then the method is applied to a much more complex annular combustor geometry in order to evaluate frequencies and growth rates of the unstable modes and to show how the variation in the parameters of the heat release law can influence the transition to instability.

1.
Polifke
,
W.
, 2004, “
Combustion Instabilities
,”
Advances in Aeroacoustics and Applications
,
von Karman Institute for Fluid Dynamics
, Lecture Series.
2.
Dowling
,
A. P.
, 1995, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
0022-460X,
180
(
4
), pp.
557
581
.
3.
Dowling
,
A. P.
, and
Stow
,
S. R.
, 2003, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
751
764
.
4.
Stow
,
S. R.
, and
Dowling
,
A. P.
, 2001, “
Thermoacoustic Oscillations in an Annular combustor
,” ASME Paper No. 2001-GT-0037.
5.
Lieuwen
,
T.
, 2003, “
Modeling Premixed Combustion–Acoustic Wave Interactions: A Review
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
765
781
.
6.
Hubbard
,
S.
, and
Dowling
,
A. P.
, 2000, “
Acoustic Resonances of an Industrial Gas Turbine Combustion System
,” ASME Paper No. 2000-GT-0094.
7.
Hantschk
,
C. C.
, and
Vortmeyer
,
D.
, 1999, “
Numerical Simulation of Self-Excited Thermoacoustic Instabilities in a Rijke Tube
,”
J. Sound Vib.
0022-460X,
227
(
3
), pp.
511
522
.
8.
Bloxsidge
,
G. J.
,
Dowling
,
A. P.
, and
Langhorne
,
P. J.
, 1988, “
Reheat Buzz: an Acoustically Coupled Combustion Instability. Part 2. Theory
,”
J. Fluid Mech.
0022-1120,
193
, pp.
445
473
.
9.
Akamatsu
,
S.
, and
Dowling
,
A. P.
, 2001, “Three Dimensional Thermoacoustic Oscillation in a Premix Combustor,” ASME Paper No. 2001-GT-0034.
10.
Evesque
,
S.
, and
Polifke
,
W.
, “
Low-Order Acoustic Modelling For Annular Combustors: Validation and Inclusion of Modal Coupling
,” ASME Paper No. GT-2002-30064.
11.
Kopitz
,
J.
,
Huber
,
A.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2005, “
Thermoacoustic Stability Analysis of an Annular Combustion Chamber With Acoustic Low Order Modeling and Validation against Experiment
,” ASME Paper No. GT2005-68797.
12.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
, 2003, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,” ASME Paper No. GT-2003-38688.
13.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2005, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
ASME J. Turbomach.
0889-504X,
127
(
2
), pp.
372
379
.
14.
Stow
,
S. R.
, and
Dowling
,
A. P.
, 2009, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
3
), p.
031502
.
15.
Martin
,
C.
,
Benoit
,
L.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 2004, “
Analysis of Acoustic Energy and Modes in a Turbulent Swirled Combustor
,”
Proceedings of the Summer Program, Stanford Center for Turbulence Research
,
NASA Ames/Stanford University
, Stanford Center for Turbulence Research, pp.
377
394
.
16.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. -U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
, 2004, “
Compressible Large-Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
0010-2180,
137
(
4
), pp.
489
505
.
17.
Walz
,
G.
,
Krebs
,
W.
,
Hoffmann
,
S.
, and
Judith
,
H.
, 2002, “
Detailed Analysis of the Acoustic Mode Shapes of an Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
1
), pp.
3
9
.
18.
Krebs
,
W.
,
Walz
,
G.
,
Flohr
,
P.
, and
Hoffmann
,
S.
, 2001, “
Modal Analysis of Annular Combustor: Effect of Burner Impedance
,” ASME Paper No. 2001-GT-0042.
19.
Bellucci
,
V.
,
Flohr
,
P.
,
Paschereit
,
C. O.
, and
Magni
,
F.
, 2004, “
On the Use of Helmholtz Resonators for Damping Acoustic Pulsations in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
271
275
.
20.
Camporeale
,
S. M.
,
Forte
,
A.
,
Fortunato
,
B.
,
Mastrovito
,
M.
, and
Ferrante
,
A.
, 2004, “
Numerical Simulation of the Acoustic Pressure Field in an Annular Combustion Chamber With Helmholtz Resonators
,” ASME Paper No. GT2004-54139.
21.
Forte
,
A.
,
Mastrovito
,
M.
,
Camporeale
,
S. M.
,
Di Bisceglie
,
F.
, and
Fortunato
,
B.
, 2006, “
Effect of Burner and Resonator Impedances on the Acoustic Behavior of Annular Combustion Chambers
,” ASME Paper No. GT2006-90423.
22.
Pankiewitz
,
C.
, and
Sattelmayer
,
T.
, 2002, “
Time Domain Simulation of Combustion Instabilities in Annular Combustors
,” ASME Paper No. GT-2002-30063.
23.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
, 2007, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
0001-1452,
45
(
2
), pp.
426
441
.
24.
2007, COMSOL Multiphysics User’s Manual.
25.
Alemela
,
P. R.
,
Fanaca
,
D.
,
Ettner
,
F.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
, 2008, “
Flame Transfer Matrices of a Premixed Flame and a Global Check With Modelling and Experiments
,” ASME Paper No. GT2008-50111.
26.
Kostrzewa
,
K.
,
Noll
,
B.
,
Aigner
,
M.
,
Lepers
,
J.
,
Krebs
,
W.
,
Prade
,
B.
, and
Huth
,
M.
, 2007, “
Validation of Advanced Computational Methods for Determining Flame Transfer Functions in Gas Turbine Combustion Systems
,” ASME Paper No. GT2007-27267.
27.
Lilleberg
,
B.
,
Ertesvåg
,
I. S.
, and
Rian
,
K. E.
, 2007, “
Computational Modelling of Combustion Instabilities in Lean Premixed Turbulent Combustors
,”
Mekit 2007 Fourth National Conference on Computational Mechanics
, Trondheim, Norway, May 23–24.
You do not currently have access to this content.