Abstract
The investigation of reactor pressure vessel (RPV) materials from decommissioned nuclear power plants (NPPs) offers the unique opportunity to scrutinize the irradiation behavior under real conditions. Material samples taken from the RPV wall enable a comprehensive material characterization. The paper describes the investigation of trepans taken from the decommissioned WWER-440 first generation RPVs of the Greifswald NPP. Those RPVs represent different material conditions such as irradiated (I); irradiated and recovery annealed (IA); and irradiated, recovery annealed, and re-irradiated (IAI). The working program is focused on the characterization of the RPV steels (base and weld metal) through the RPV wall. The key part of the testing is aimed at the determination of the reference temperature following the American Society for Testing of Materials (ASTM) Test Standard E1921–08 to determine the fracture toughness of the RPV steel in different thickness locations. In a first step, the trepans taken from the RPV Greifswald unit 1 containing the X-butt multilayer submerged welding seam and from base metal ring 0.3.1 both located in the beltline region were investigated. Unit 1 represents the IAI condition. It is shown that the master curve (MC) approach as adopted in ASTM E1921 is applicable to the investigated original WWER-440 weld metal. The evaluated varies through the thickness of the welding seam. The lowest value was measured in the root region of the welding seam representing a uniform fine grain ferritic structure. Beyond the welding root shows a wavelike behavior. The highest of the weld seam was not measured at the inner wall surface. This is important for the assessment of ductile-to-brittle temperatures measured on subsize Charpy specimens made of weld metal compact samples removed from the inner RPV wall. Our findings imply that these samples do not represent the most conservative condition. Nevertheless, the Charpy-V transition temperature estimated with results of subsize specimens after the recovery annealing was confirmed by the testing of standard Charpy-V-notch specimens. The evaluated shows a better accordance with the irradiation fluence along the wall thickness than the master curve reference temperature . The evaluated from the trepan of base metal ring 0.3.1 varies through the thickness of the RPV wall. The values generally follow the course of the MC, although the scatter is large. The re-embrittlement during two campaign operations can be assumed to be low for the weld and base metal.