For more than 1 decade up to now, there is an ongoing interest in small gas turbines downsized to microscale. With their high energy density, they offer a great potential as a substitute for today’s unwieldy accumulators found in a variety of applications such as laptops, small tools, etc. But microscale gas turbines could not only be used for generating electricity, they could also produce thrust for powering small unmanned aerial vehicles or similar devices. Beneath all the great design challenges with the rotating parts of the turbomachinery at this small scale, another crucial item is in fact the combustion chamber needed for a safe and reliable operation. With the so-called regular micromix burning principle for hydrogen successfully downscaled in an initial combustion chamber prototype of 10 kW energy output, this paper describes a new design attempt aimed at the integration possibilities in a μ-scale gas turbine. For manufacturing the combustion chamber completely out of stainless steel components, a recuperative wall cooling was introduced to keep the temperatures in an acceptable range. Also a new way of an integrated ignition was developed. The detailed description of the prototype’s design is followed by an in depth report about the test results. The experimental investigations comprise a set of mass flow variations, coupled with a variation of the equivalence ratio for each mass flow at different inlet temperatures and pressures. With the data obtained by an exhaust gas analysis, a full characterization concerning combustion efficiency and stability of the prototype chamber is possible. Furthermore, the data show full compliance with the expected operating requirements of the designated μ-scale gas turbine.

1.
Epstein
,
A. H.
, 2003, “
Millimeter Scale MEMS Gas Turbine Engines
,”
ASME
Paper No. GT2003-38866.
2.
Nicoul
,
F. X.
,
Guidez
,
J.
,
Dessornes
,
O.
, and
Ribaud
,
Y.
, 2007, “
Two Stage Ultra Micro Turbine: Thermodynamic and Performance Study
,”
Technical Digest PowerMEMS 2007
, Freiburg, Germany, pp.
301
304
.
3.
Guidez
,
J.
,
Nicoul
,
F. X.
,
Josso
,
P.
, and
Valle
,
R.
, 2009, “
Development of a Micro Gas Turbine Engine at ONERA
,”
Proceedings of the 19th ISABE Conference
, Montreal, Canada, Paper No. ISABE-2009-1307.
4.
Tanaka
,
S.
,
Hikichi
,
K.
,
Togo
,
S.
,
Murayama
,
M.
,
Hirose
,
Y.
,
Sakurai
,
T.
,
Yuasa
,
S.
,
Teramoto
,
S.
,
Niino
,
T.
,
Mori
,
T.
,
Esashi
,
M.
, and
Isomura
,
K.
, 2007, “
World’s Smallest Gas Turbine Establishing Brayton Cycle
,”
Technical Digest PowerMEMS 2007
, Freiburg, Germany, pp.
359
362
.
5.
PowerMEMS Project Homepage, www.powermems.bewww.powermems.be
6.
Peirs
,
J.
,
Reynarts
,
D.
, and
Verplaetsen
,
F.
, 2004, “
A Microturbine for Electric Power Generation
,”
Sens. Actuators, A
0924-4247,
113
, pp.
86
93
.
7.
Peirs
,
J.
,
Van Den Braembussche
,
R.
,
Hendrick
,
P.
,
Baelmans
,
M.
,
Driesen
,
J.
,
Puers
,
R.
,
Al-Bender
,
F.
,
Waumans
,
T.
,
Vleugels
,
P.
,
Ferraris
,
E.
,
Liu
,
K.
,
Alsalihi
,
Z.
,
Di Sante
,
A.
,
Verstraete
,
T.
,
Grossen
,
J.
,
Bécret
,
P.
,
Trilla
,
J.
,
Stevens
,
T.
,
Rogiers
,
F.
,
Stevens
,
S.
,
Ceyssens
,
F.
, and
Reynaerts
,
D.
, 2007, “
Development of a Gas Turbine Generator with a 20 mm Rotor
,”
Technical Digest PowerMEMS 2007
, Freiburg, Germany, pp.
355
358
.
8.
Waitz
,
I. A.
,
Gauba
,
G.
, and
Tzeng
,
Y. -S.
, 1998, “
Combustors for Micro-Gas Turbine Engines
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
109
117
.
9.
Mehra
,
A.
, and
Waitz
,
I. A.
, 1998, “
Development of a Hydrogen Combustor for a Microfabricated Gas Turbine Engine
,”
Solid-State Sensor Actuator Workshop
, Hilton Head, SC.
10.
Mehra
,
A.
,
Zhang
,
X.
,
Ayón
,
A. A.
,
Waitz
,
I. A.
,
Schmidt
,
M. A.
, and
Spadaccini
,
C. M.
, 2000, “
A Six-Wafer Combustion System for a Silicon Micro Gas Turbine Engine
,”
J. Microelectromech. Syst.
1057-7157,
9
(
4
), pp.
517
527
.
11.
Spadaccini
,
C. M.
,
Mehra
,
A.
,
Lee
,
J.
,
Zhang
,
X.
,
Lukachko
,
S.
, and
Waitz
,
I. A.
, 2003, “
High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
709
719
.
12.
Yuasa
,
S.
,
Oshimi
,
K.
, and
Uehara
,
M.
, 2003, “
Concepts and Combustion Characteristics of an Ultra-Micro and a Micro Combustor
,”
International Gas Turbine Congress 2003
, Tokyo, Japan, Paper No. IGTC2003Tokyo OS-108.
13.
Yuasa
,
S.
,
Sakurai
,
T.
,
Shimotori
,
S.
,
Honda
,
T.
, and
Fueda
,
T.
, 2009, “
Development of Engineering-Models of H2
-Fueled and C3H8-Fueled Ultra-Micro Combustors for UMGT,”
Proceedings of the 19th ISABE Conference
, Montreal, Canada, Paper No. ISABE-2009–1310.
14.
Nagashima
,
T.
, 2005, “
Lessons Learnt From the Ultra-Micro Gas Turbine Development at University of Tokyo
,”
Micro Gas Turbines
, Educational Notes RTO-EN-AVT-131, Paper 14, Neuilly-sur-Seine, France, pp.
14
-1–14-
58
.
15.
Suttrop
,
F.
, and
Dorneiski
,
R.
, 1991, “
Low NOx
-Potential of Hydrogen-Fuelled Gas Turbine Engines,”
The First International Conference on Combustion Technologies for Clean Environment
, Vilamoura, Spain.
16.
Dahl
,
G.
, and
Suttrop
,
F.
, 2001, “
Combustion Chamber and Emissions, The Micromix Hydrogen Combustor Technology
,” CRYOPLANE Project, Task Technical Report No. 4.4-5A.
17.
Ziemann
,
J.
,
Mayr
,
A.
,
Anagnostou
,
A.
,
Suttrop
,
F.
,
Lowe
,
M.
,
Bagheri
,
S. A.
, and
Nitsche
,
T.
, 1998, “
Potential Use of Hydrogen in Air Propulsion
,” EQHHPP, Phase III.0-3, Final Report, submitted to the European Union.
18.
Dahl
,
G.
, and
Suttrop
,
F.
, 1998, “
Engine Control and Low-NOx Combustion for Hydrogen Fuelled Aircraft Gas Turbines
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
8
), pp.
695
704
.
19.
Robinson
,
A.
, and
Funke
,
H.
, 2007, “
Development of a New Test Rig for a Micro Scale Hydrogen Combustion Chamber
,”
Proceedings of EUCASS 2007
, Brussels, Belgium.
20.
Robinson
,
A.
,
Rönna
,
U.
, and
Funke
,
H.
, 2007, “
Testing of a 10 kW Diffusive Micro-Mix Combustor for Hydrogen Fuelled Micro-Scale Gas Turbines
,”
Technical Digest PowerMEMS 2007
, Freiburg, Germany, pp.
225
228
.
21.
Robinson
,
A.
,
Rönna
,
U.
, and
Funke
,
H.
, 2008, “
Development and Testing of a 10 kW Diffusive Micromix Combustor for Hydrogen-Fuelled μ
-Scale Gas Turbines,”
ASME
Paper No. GT2008-50418.
22.
Robinson
,
A.
,
Funke
,
H.
,
Recker
,
E.
,
Hendrick
,
P.
, and
Peirs
,
J.
, 2008, “
Development of a Hydrogen Fuelled 1 kW Ultra Micro Gas Turbine With Special Respect to Designing, Testing and Mapping of the μ
-Scale Combustor,”
Proceedings of IEEE ICSET 2008
, Singapore, Paper No. 235.
23.
Robinson
,
A.
,
Funke
,
H.
,
Wagemakers
,
R.
,
Grossen
,
J.
,
Bosschaerts
,
W.
, and
Hendrick
,
P.
, 2009, “
Numerical and Experimental Investigation of a Micromix Combustor for a Hydrogen Fuelled μ
-Scale Gas Turbine,”
ASME
Paper No. GT2009-60061.
24.
Levy
,
Y.
,
Erenburg
,
V.
,
Goldman
,
Y.
,
Sherbaum
,
V.
, and
Ovcharenko
,
V.
, 2009, “
CFD assisted Design of Micro GT Combustor
,”
ASME
Paper No. GT2009-59448.
25.
Shan
,
X. C.
,
Wang
,
Z. F.
,
Jin
,
Y. F.
,
Wu
,
M.
,
Hua
,
J.
,
Wong
,
C. K.
, and
Maeda
,
R.
, 2005, “
Studies on a Micro Combustor for Gas Turbine Engines
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
S215
S221
.
26.
Wu
,
M.
,
Hua
,
J.
, and
Kumar
,
K.
, 2005, “
An Improved Micro-Combustor Design for Micro Gas Gurbine Engine and Numerical Analysis
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1817
1823
.
27.
Sullivan
,
S.
,
Zhang
,
X.
,
Ayón
,
A.
, and
Brisson
,
J. G.
, 2001, “
Demonstration of a Microscale Heat Exchanger for a Silicon Micro Gas Turbine Engine
,”
Proceedings of the 11th International Conference on Solid-Sate Sensors and Actuators
, Munich, Germany.
28.
Lefebvre
,
A. H.
, 1998,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
,
London
, Chap. 8, pp.
275
285
.
You do not currently have access to this content.