The laminar burning velocity of liquefied petroleum gas (LPG) air mixtures at high temperatures is extracted from the planar flames stabilized in the preheated mesoscale diverging channel. The experiments were carried out for a range of equivalence ratios and mixture temperatures. Computational predictions of the burning velocity and detailed flame structure were performed using the PREMIX code with USC mech 2.0. The present data are in very good agreement with both the recent experimental and computational results available. A peak burning velocity was observed for slightly rich mixtures, even at higher mixture temperatures. The minimum value of th temperature exponent is observed for slightly rich mixtures.
Issue Section:
Gas Turbines: Combustion, Fuels, and Emissions
References
1.
Mishra
, D. P.
, and Rahman
, A.
, 2003
, “An Experimental Study of Flammability Limits of LPG/Air Mixtures
,” Fuel
, 82
, pp. 863
–866
.10.1016/S0016-2361(02)00325-32.
Vukadinovic
, V.
, Habisreuther
, P.
, and Zarzalis
, N.
, 2012
, “Experimental Study on Combustion Characteristics of Conventional and Alternative Liquid Fuels
,” ASME J. Eng. Gas Turbines Power
, 134
, p. 121504
.10.1115/1.40073333.
Chakraborty
, S. K.
, Mukhopadhyay
, B. N.
, and Chanda
, B. C.
, 1975
, “Effect of Inhibitors on Flammability Range of Flames Produced From LPG/Air Mixtures
,” Fuel
, 54
, pp. 10
–16
.10.1016/0016-2361(75)90022-84.
Razus
, D.
, Brinzea
, V.
, Mitu
, M.
, and Oancea
, D.
, 2010
, “Air Mixtures in the Presence of Exhaust Gas Burning Velocity of LPG (Liquefied Petroleum Gas)
,” Energy Fuels
, 24
, pp. 1483
–1494
.10.1021/ef901209q5.
Lee
, K.
, and Ryu
, J.
, 2005
, “An Experimental Study of the Flame Propagation and Combustion Characteristics of LPG Fuel
,” Fuel
, 84
, pp. 1116
–1127
.10.1016/j.fuel.2004.12.0186.
Liao
, S.
, Jiang
, D.
, Gao
, J.
, Huang
, Z.
, and Cheng
, Q.
, 2004
, “Measurements of Markstein Numbers and Laminar Burning Velocities for Liquefied Petroleum Gas-Air Mixtures
,” Fuel
, 83
, pp. 1281
–1288
.10.1016/j.fuel.2003.12.0137.
Huzayyin
, A.
, Moneib
, H.
, Shehatta
, M.
, and Attia
, A.
, 2008
, “Laminar Burning Velocity and Explosion Index of LPG-Air and Propane-Air Mixtures
,” Fuel
, 87
, pp. 39
–57
.10.1016/j.fuel.2007.04.0018.
Akram
, M.
, and Kumar
, S.
, 2011
, “Experimental Studies on Dynamics of Methane-Air Premixed Flames in Meso-Scale Diverging Channels
,” Combust. Flame
, 158
, pp. 915
–924
.10.1016/j.combustflame.2011.02.0119.
Akram
, M.
, and Kumar
, S.
, 2012
, “Measurement of Laminar Burning Velocity of Liquefied Petroleum Gas-Air Mixtures at Elevated Temperatures
,” Energy Fuels
, 26
, pp. 3267
–3274
.10.1021/ef300101n10.
Akram
, M.
, Kishore
, V. R.
, and Kumar
, S.
, 2012
, “Laminar Burning Velocity of Propane/CO2/N2 Air Mixtures at Elevated Temperatures
,” Energy Fuels
, 26
, pp. 5509
–5518
.10.1021/ef301000k11.
Akram
, M.
, Minaev
, S.
, and Kumar
, S.
, 2013
, “Investigations on the Formation of Planar Flames in Meso-Scale Divergent Channels and Prediction of Burning Velocity at High Temperatures
,” Combust. Sci. Technol.
, 85
, pp. 645
–660
.10.1080/00102202.2012.73922412.
Kee
, R. J.
, Grear
, J. F.
, Smooke
, M.
, and Miller
, J.
, 1993
, “A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories, Technical Report No. SAND85-8240.13.
Kee
, R. J.
, Rupley
, F.
, and Miller
, J.
, 1993
, “CHEMKIN II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Laboratories, Technical Report No. SAND89-8009B.14.
Kee
, R. J.
, Dixon-Lewis
, G.
, Warnatz
, J.
, Coltrin
, M.
, and Miller
, J.
, 1992
, “A FORTRAN Computer Code Package for the Evaluation of Gas-Phase, Multi-Component Transport Properties
,” Sandia National Laboratories, Technical Report No. SAND86-8246.15.
Wang
, H.
, You
, X.
, Joshi
, A. V.
, Davis
, S. G.
, Laskin
, A.
, Egolfopoulos
, F.
, and Law
, C. K.
, 2007
, “USC Mech Version II. High-Temperature Combustion Reaction Model of H2=CO=C1–C4 Compounds
,” available at http://ignis.usc.edu/USC_Mech_II.htm16.
Gu
, X. J.
, Haq
, M. Z.
, Lawes
, M.
, and Woolley
, R.
, 2000
, “Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures
,” Combust. Flame
, 121
, p. 41
.10.1016/S0010-2180(99)00142-X17.
Konnov
, A.
, 2010
, “The Effect of Temperature on the Adiabatic Laminar Burning Velocities of CH4-Air and H2-Air Flames
,” Fuel
, 89
, pp. 2211
–2216
.10.1016/j.fuel.2009.11.03818.
Davis
, S. G.
, and Law
, C. K.
, 1998
, “Determination of Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,” Combust. Sci. Technol.
, 140
, pp. 427
–449
.10.1080/00102209808915781Copyright © 2013 by ASME
You do not currently have access to this content.