Quasi-dimensional (QD) modeling of combustion in spark-ignition (SI) engines allows to describe the most relevant processes of heat release. Here, a submodel for the ignition delay is introduced and applied. The start of combustion is considered from ignition to the crank angle of 5% burned gas fraction. The introduced physical approach identifies the turbulent propagation velocity of the initiated kernel by taking into account early flame expansion and geometric restrictions of the flame propagation. The model is applied to stationary operation within an entire engine map of a turbocharged direct injection SI engine with fully variable valvetrain. Based on provided cycle-averaged input data, the model delivers good results within the margins of measured cycle-to-cycle fluctuations. Thus, it contributes to the assessment of the interplay between engine, engine control unit, drivetrain, and vehicle dynamics, hence making a step toward optimization and virtual engine calibration.

References

1.
Blizard
,
N. C.
, and
Keck
,
J. C.
,
1974
, “
Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines
,”
SAE
Paper No. 740191. 10.4271/740191
2.
Santavicca
,
D. A.
,
Liou
,
D.
, and
North
,
G. L.
,
1990
, “
A Fractal Model of Turbulent Flame Kernel Growth
,”
SAE
Paper No. 900024. 10.4271/900024
3.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
4.
Pischinger
,
S.
, and
Heywood
,
J. B.
,
1990
, “
How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine
,”
SAE
Paper No. 900021. 10.4271/900021
5.
Herweg
,
R.
, and
Maly
,
R.
,
1992
, “
A Fundamental Model for Flame Kernel Formation in S.I. Engines
,”
SAE
Paper No. 922243. 10.4271/922243
6.
Boulouchos
,
K.
,
Steiner
,
T.
, and
Dimopoulos
,
P.
,
1994
, “
Investigation of Flame Speed Models for the Flame Growth Period During Premixed Engine Combustion
,”
SAE
Paper No. 940476. 10.4271/940476
7.
Shen
,
H.
,
Hinze
,
P. C.
, and
Heywood
,
J. B.
,
1994
, “
A Model for Flame Initiation and Early Development in SI Engine and Its Application to Cycle-to-Cycle Variations
,”
SAE
Paper No. 942049. 10.4271/942049
8.
Ewald
,
J.
,
2006
, “
A Level Set Based Flamelet Model for the Prediction of Combustion in Homogeneous Charge and Direct Injection Spark Ignition Engines
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
9.
Wiese
,
W.
,
Pischinger
,
S.
,
Adomeit
,
P.
, and
Ewald
,
J.
,
2009
, “
Prediction of Combustion Delay and Duration of Homogeneous Charge Gasoline Engines Based on In-Cylinder Flow Simulation
,”
SAE
Paper No. 2009-01-1796. 10.4271/2009-01-1796
10.
Dahms
,
R.
,
Fansler
,
T. D.
,
Drake
,
M. C.
,
Kuo
,
T. W.
,
Lippert
,
A. M.
, and
Peters
,
N.
,
2009
, “
Modeling Ignition Phenomena in Spray-Guided Spark-Ignited Engines
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2743
2750
.10.1016/j.proci.2008.05.052
11.
Wenig
,
M.
,
Grill
,
M.
, and
Bargende
,
M.
,
2013
, “
A New Approach for Modeling Cycle-to-Cycle Variations Within the Framework of a Real Working-Process Simulation
,”
SAE
Paper No. 2013-01-1315. 10.4271/2013-01-1315
12.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines: A Literature Survey
,”
SAE
Paper No. 940987. 10.4271/940987
13.
Koch
,
P.
,
Löffler
,
M.
,
Wensing
,
M.
, and
Leipertz
,
A.
,
2010
, “
Study of the Mixture Formation Processes Inside a Modern Gasoline Engine
,”
Int. J. Eng. Res.
,
11
(
6
), pp.
455
471
.10.1243/14680874JER606
14.
Pischinger
,
R.
,
Klell
,
M.
, and
Sams
,
T.
,
2009
,
Thermodynamik der Verbrennungskraftmaschine
,
Springer-Verlag
,
Wien, Austria
.
15.
Maly
,
R.
, and
Vogel
,
M.
,
1978
, “
Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark
,”
Proc. Combust. Inst.
,
17
(
1
), pp.
821
831
.10.1016/S0082-0784(79)80079-X
16.
Pischinger
,
S.
, and
Heywood
,
J. B.
,
1988
, “
A Study of Flame Development and Engine Performance With Breakdown Ignition Systems in a Visualization Engine
,”
SAE
Paper No. 880518. 10.4271/880518
17.
Peters
,
N.
,
2009
,
Technische Verbrennung
,
RWTH ITV
,
Aachen, Germany
.
18.
Smooke
,
M. D.
,
1991
,
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume (Lecture Notes in Physics, Vol. 384)
,
Springer
,
Berlin, Germany
.
19.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University
, Cambridge, UK.
20.
Grasreiner
,
S.
,
Neumann
,
J.
,
Luttermann
,
C.
,
Wensing
,
M.
, and
Hasse
,
C.
,
2014
, “
A Quasi-Dimensional Model of Turbulence and Global Charge Motion for Spark Ignition Engines With Fully Variable Valvetrains
,”
Int. J. Eng. Res.
,
15
(
7
), pp.
805
816
.10.1177/1468087414521615
21.
Schmid
,
H.-P.
,
1995
, “
Ein Verbrennungsmodell zur Beschreibung der Wärmefreisetzung von vorgemischten turbulenten Flammen
,” Ph.D. thesis, TH Karlsruhe, Karlsruhe, Germany.
22.
Grill
,
M.
,
Billinger
,
T.
, and
Bargende
,
M.
,
2006
, “
Quasi-Dimensional Modeling of Spark Ignition Engine Combustion With Variable Valve Train
,”
SAE
Paper No. 2006-01-1107. 10.4271/2006-01-1107
23.
Beretta
,
G. P.
,
Rashidi
,
M.
, and
Keck
,
J. C.
,
1983
, “
Turbulent Flame Propagation and Combustion in Spark Ignition Engines
,”
Combust. Flame
,
52
, pp.
217
245
.10.1016/0010-2180(83)90135-9
24.
Bozza
,
F.
,
Gimelli
,
A.
,
Merola
,
S. S.
, and
Vaglieco
,
B. M.
,
2005
, “
Validation of a Fractal Combustion Model Through Flame Imaging
,”
SAE
Paper No. 2005-01-1120. 10.4271/2005-01-1120
25.
Grasreiner
,
S.
,
2012
, “
Combustion Modeling for Virtual SI Engine Calibration With the Help of 0D/3D Methods
,” Ph.D. thesis, TU Bergakademie Freiberg, Freiberg, Germany.
26.
Löffler
,
M.
,
Kröckel
,
K.
,
Koch
,
P.
,
Beyrau
,
F.
,
Leipertz
,
A.
,
Grasreiner
,
S.
, and
Heinisch
,
A.
,
2009
, “
Simultaneous Quantitative Measurements of Temperature and Residual Gas Fields Inside a Fired SI-Engine Using Acetone Laser-Induced Fluorescence
,”
SAE
Paper No. 2009-01-0656. 10.4271/2009-01-0656
You do not currently have access to this content.