Lean-premixed gas turbines are now common devices for low emissions stationary power generation. By creating a homogeneous mixture of fuel and air upstream of the combustion chamber, temperature variations are reduced within the combustor, which reduces emissions of nitrogen oxides. However, by premixing fuel and air, a potentially flammable mixture is established in a part of the engine not designed to contain a flame. If the flame propagates upstream from the combustor (flashback), significant engine damage can result. While significant effort has been put into developing flashback resistant combustors, these combustors are only capable of preventing flashback during steady operation of the engine. Transient events (e.g., auto-ignition within the premixer and pressure spikes during ignition) can trigger flashback that cannot be prevented with even the best combustor design. In these cases, preventing engine damage requires designing premixers that will not allow a flame to be sustained. Experimental studies were conducted to determine under what conditions premixed flames of hydrogen and natural gas can be anchored in a simulated gas turbine premixer. Tests have been conducted at pressures up to 9 atm, temperatures up to 750 K, and freestream velocities between 20 and 100 m/s. Flames were anchored in the wakes of features typical of premixer passageways, including cylinders, steps, and airfoils. The results of this study have been used to develop an engineering tool that predicts under what conditions a flame will anchor, and can be used for development of flame anchoring resistant gas turbine premixers.

References

1.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
,
2001
, “
Issues for Low-Emission, Fuel Flexible Power Systems
,”
Prog. Energy Combust. Sci.
,
27
(
2
), pp.
141
169
.
2.
Koseki
,
H.
, and
Sato
,
M.
,
2002
, “
Experimental Investigation of Flashback During Start-Up in Practical Premixed Combustion
,”
Appl. Energy
,
73
(
3–4
), pp.
237
259
.
3.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.
4.
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2014
, “
Flameholding Tendencies of Natural Gas and Hydrogen Flames at Gas Turbine Premixer Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
011504
.
5.
Chaudhuri
,
S.
,
Kosta
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
(
4
), pp.
790
802
.
6.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2010
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.
7.
Noble
,
D. R.
,
Quingquo
,
Z.
,
Akbar
,
S.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
,
2006
, “
Syngas Mixture Composition Effects Upon Flashback and Blowoff
,”
ASME
Paper No. GT2006-90470.
8.
Subramanya
,
M.
,
Davu
,
D. S.
, and
Choudhuri
,
A.
,
2005
, “
Experimental Investigation on the Flame Extinction Limit of Fuel Blends
,”
AIAA
Paper No. 2005-374.
9.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
,
1986
, “
Relationship Between Flame Stability and Drag of Bluff-Body Flameholders
,”
J. Propul. Power
,
2
(
4
), pp.
361
365
.
10.
Leonard
,
P. A.
, and
Mellor
,
A. M.
,
1983
, “
Correlation of Lean Blowoff of Gas Turbine Combustors Using Alternative Fuels
,”
J. Energy
,
7
(
6
), pp.
729
732
.
11.
Ballal
,
D. R.
, and
Lefebvre
,
A. H.
,
1979
, “
Weak Extinction Limits of Turbulent Flowing Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
101
(
3
), pp.
343
348
.
12.
Wright
,
F. H.
,
1959
, “
Bluff-Body Stabilization: Blockage Effects
,”
Combust. Flame
,
3
(
1
), pp.
319
337
.
13.
Zukoski
,
E. E.
, and
Marble
,
F. E.
,
1955
, “
The Role of Wake Transition in the Process of Flame Stabilization on Bluff Bodies
,”
AGARD Combustion Researches and Reviews
,
Butterworth Scientific Publishers
,
London
, pp.
167
180
.
14.
DeZubay
,
E. A.
,
1950
, “
Characteristics of Disk-Controlled Flames
,”
Aero Dig.
,
54
(
6
), pp.
102
104
.
15.
Huelmantel
,
L. W.
,
Ziemer
,
R. W.
, and
Cambel
,
A. B.
,
1957
, “
Stabilization of Premixed Propane–Air Flames in Recessed Ducts
,”
Jet Propul.
,
27
(
1
), pp.
31
34
.
16.
Choudhury
,
P. R.
, and
Cambel
,
A. B.
,
1961
, “
Flame Stabilization by Wall Recesses
,”
Symp. (Int.) Combust.
,
8
(
1
), pp.
963
970
.
17.
Katta
,
V. R.
, and
Roquemore
,
W. M.
,
1998
, “
Numerical Studies on Trapped-Vortex Concepts for Stable Combustion
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
60
68
.
18.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.
19.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Nazeer
,
W. A.
, and
Smith
,
K. O.
,
2008
, “
Laboratory Study of Premixed H2-Air and H2-N2-Air Flames in a Low-Swirl Injector for Ultralow Emissions Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021501
.
20.
Cheng
,
R. K.
, and
Littlejohn
,
D.
,
2008
, “
Laboratory Studies of the Flow Field Characteristics of Low-Swirl Injectors for Adaptation to Fuel-Flexible Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031503
.
21.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2012
, “
Flashback, Blow Out, Emissions, and Turblent Displacement Flame Speed Measurements in a Hydrogen and Methane Fired Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME
Paper No. GT2012-68216.
22.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Hyuk Shin
,
D.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Measurements and Analysis of Turbulent Consumption Speeds of H2/CO Mixtures
,”
Combustion and Flame
,
158
(
8
), pp.
1602
1614
.
23.
FLUENT
,
2006
, “
Determining Turbulence Parameters: FLUENT 6.3 User's Guide
,” ANSYS, Inc., Canonsburg, PA, pp.
7-14
7-17
.
24.
Page
,
D.
,
Shaffer
,
B.
, and
McDonell
,
V.
,
2012
, “
Establishing Operating Limits in a Commercial Lean Premixed Combustor Operating on Synthesis Gas Pertaining to Flashback and Blowout
,”
ASME
Paper No. GT2012-69355.
25.
Hui
,
X.
, and
Sung
,
C. J.
,
2013
, “
Laminar Flame Speeds of Transportation-Relevant Hydrocarbons and Jet Fuels at Elevated Temperatures and Pressures
,”
Fuel
,
109
, pp.
191
200
.
26.
Far
,
K. E.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(
5
), pp.
1041
1049
.
27.
Liu
,
K.
,
Fu
,
J.
,
Deng
,
B.
,
Yang
,
J.
,
Tang
,
Q.
, and
Liu
,
J.
,
2014
, “
The Influence of Pressure and Temperature on Laminar Flame Propagation of n-butanol, Iso-Octane and Their Blends
,”
Energy
,
73
, pp.
703
715
.
28.
Potter
,
A.
, and
Wong
,
E.
,
1958
, “
Effect of Pressure and Duct Geometry on Bluff-Body Flame Stabilization
,” National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory, Cleveland, OH, Technical Report No.
NACA
TN 4381.
You do not currently have access to this content.