Condensing nozzle flows have been used extensively to validate wet steam models. Many test cases are available in the literature, and in the past, a range of numerical studies have dealt with this challenging task. It is usually assumed that the nozzles provide a one- or two-dimensional flow with a fully turbulent boundary layer (BL). The present paper reviews these assumptions and investigates numerically the influence of boundary layers on dry and wet steam nozzle expansions. For the narrow nozzle of Moses and Stein, it is shown that the pressure distribution is significantly affected by the additional blockage due to the side wall boundary layer. Comparison of laminar and turbulent flow predictions for this nozzles suggests that laminar–turbulent transition only occurs after the throat. Other examples are the Binnie and Green nozzle and the Moore et al. nozzles for which it is known that sudden changes in wall curvature produce expansion and compression waves that interact with the boundary layers. The differences between two- and three-dimensional calculations for these cases and the influence of laminar and turbulent boundary layers are discussed. The present results reveal that boundary layer effects can have a considerable impact on the mean nozzle flow and thus on the validation process of condensation models. In order to verify the accuracy of turbulence modeling, a test case that is not widely known internationally is included within the present study. This experimental work is remarkable because it includes boundary layer data as well as the usual pressure measurements along the nozzle centerline. Predicted and measured boundary layer profiles are compared, and the effect of different turbulence models is discussed. Most of the numerical results are obtained with the in-house wet steam Reynolds-averaged Navier–Stokes (RANS) solver, Steamblock, but for the purpose of comparison, the commercial program ansys cfx is also used, providing a wider range of standard RANS-based turbulence models.

References

1.
Young
,
J. B.
,
1982
, “
The Spontaneous Condensation of Steam in Supersonic Nozzles
,”
PhysicoChem. Hydrodyn.
,
3
(
1
), pp.
57
82
.
2.
Young
,
J. B.
,
1992
, “
Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Nozzles and Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
569
579
.
3.
Št'astný
,
M.
,
Šejna
,
M.
, and
Jonas
,
O.
,
1997
, “
Modeling the Flow With Condensation and Chemical Impurity in Steam Turbine Cascade
,”
2nd European Conference on Turbomachinery
, pp.
81
88
.
4.
Wróblewski
,
W.
,
Dykas
,
S.
,
Gardzilewicz
,
A.
, and
Kolovratnik
,
M.
,
2009
, “
Numerical and Experimental Investigations of Steam Condensation in LP Part of a Large Power Turbine
,”
ASME J. Fluids Eng.
,
131
(
4
), p. 041301.
5.
Chandler
,
K. D.
,
White
,
A. J.
, and
Young
,
J. B.
,
2015
, “
A Study of Spontaneous Condensation in an LP Test Turbine
,”
ASME
Paper No. GT2015-42458.
6.
Starzmann
,
J.
,
Casey
,
M.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2014
, “
Wetness Loss Prediction for a Low Pressure Steam Turbine Using CFD
,”
Proc. IMechE, Part A: J. Power Energy
,
228
(
2
), pp.
216
231
.
7.
Zhu
,
X.
,
Yuan
,
X.
,
Lin
,
Z.
,
Shibukawa
,
N.
,
Tsukuda
,
T.
,
Niizeki
,
Y.
, and
Tanuma
,
T.
,
2013
, “
An Upwind Eulerian–Eulerian model for Non-Equilibrium Condensation Steam Turbines
,”
ASME
Paper No. GT2013-95047.
8.
Moses
,
C. A.
, and
Stein
,
G. D.
,
1978
, “
On the Growth of Steam Droplets Formed in a Laval Nozzle Using Both Static Pressure and Light Scattering Measurements
,”
ASME J. Fluids Eng.
100
(
3
), pp.
311
322
.
9.
Moore
,
M. J.
,
Walters
,
P. T.
,
Crane
,
R. I.
, and
Davidson
,
B. J.
,
1973
, “
Predicting the Fog-Drop Size in Wet-Steam Turbines
,”
IMECHE Conference on Wet Steam 4
.
10.
Binnie
,
A. M.
, and
Green
,
J. R.
,
1942
, “
An Electrical Detector of Condensation in High-Velocity Steam
,”
Proc. R. Soc. London A
,
181
(
985
), pp.
134
153
.
11.
Barschdorff
,
D.
,
1971
, “
Verlauf der Zustandsgrößen und gasdynamische Zusammenhänge bei der spontanen Kondensation reinen Wasserdampfes in Lavaldüsen
,”
Forsch. Ingenieurwes.
,
37
(
5
), pp.
146
157
.
12.
Oswatitsch
,
K.
,
1942
, “
Kondensationserscheinungen in Überschalldüsen
,”
Z. Angew. Math. Mech.
,
22
(
1
), pp.
1
14
.
13.
White
,
A. J.
, and
Young
,
J. B.
,
1993
, “
Time-Marching Method for the Prediction of Two-Dimensional, Unsteady Flows of Condensing Steam
,”
AIAA J. Propul. Power
,
9
(
4
), pp.
579
587
.
14.
Simpson
,
D. A.
, and
White
,
A. J.
,
2005
, “
Viscous and Unsteady Flow Calculations of Condensing Steam in Nozzles
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
71
79
.
15.
Wróblewski
,
W.
,
Dykas
,
S.
, and
Gepert
,
A.
,
2009
, “
Steam Condensing Flow Modeling in Turbine Channels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
498
506
.
16.
Gyarmathy
,
G.
, and
Meyer
,
H.
,
1965
,
Spontane Kondensation Teil 2: Einfluss der Entspannungsschnelligkeit auf die Nebelbildung in übersättigtem Dampf
(VDI-Forschungsheft) Vol. 508,
VDI-Verlag, Dusseldorf
,
Germany
.
17.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
18.
Pullan
,
G.
, and
Denton
,
J. D.
,
2003
, “
Numerical Simulations of Vortex-Turbine Blade Interaction
,”
5th European Conference on Turbomachinery
, pp.
1049
1059
.
19.
Chandler
,
K. D.
,
White
,
A. J.
, and
Young
,
J. B.
,
2014
, “
Non-Equilibrium Wet-Steam Calculations of Unsteady Low-Pressure Turbine Flows
,”
Proc. IMechE, Part A: J. Power Energy
,
228
(
2
), pp.
143
152
.
20.
Hill
,
P. G.
,
Miyagawa
,
K.
, and
Denton
,
J. D.
,
2000
, “
Fast and Accurate Inclusion of Steam Properties in Two- and Three-Dimensional Steam Turbine Flow Calculations
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
214
(
7
), pp.
903
919
.
21.
IAPWS-IF97
,
2007
, “
Revised Release on the IAPWS Industrial Formulation 1997 for Thermodynamic Properties of Water and Steam
,”
International Association for the Properties of Water and Steam
, Lucerne, Switzerland.http://www.iapws.org/relguide/IF97-Rev.pdf
22.
IAPWS
,
2008
, “
Release on the IAPWS Formulation 2008 for Viscosity of Ordinary Water Substance
,”
International Association for the Properties of Water and Steam
, Berlin, Germany.http://www.iapws.org/relguide/visc.pdf
23.
IAPWS
,
2011
, “
Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance
,”
International Association for the Properties of Water and Steam
, Plzen, Czech Republic.http://www.iapws.org/relguide/ThCond.pdf
24.
IAPWS
,
2014
, “
Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
International Association for the Properties of Water and Steam
, Moscow, Russia.http://www.iapws.org/relguide/IAPWS95-2014.pdf
25.
Bakhtar
,
F.
,
Young
,
J. B.
,
White
,
A. J.
, and
Simpson
,
D. A.
,
2005
, “
Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
219
(
12
), pp.
1315
1333
.
26.
Hill
,
P. G.
,
1966
, “
Condensation of Water Vapour During Supersonic Expansion in Nozzles
,”
J. Fluid Mech.
,
25
(
03
), pp.
593
620
.
27.
White
,
A. J.
, and
Hounslow
,
M. J.
,
2000
, “
Modelling Droplet Size Distributions in Polydispersed Wet-Steam Flows
,”
Int. J. Heat Mass Transfer
,
43
(
11
), pp.
1873
1884
.
28.
White
,
A. J.
,
2003
, “
A Comparison of Modelling Methods for Polydispersed Wet-Steam Flow
,”
Int. J. Numer. Methods Eng.
,
57
(
6
), pp.
819
834
.
29.
Hughes
,
F. R.
,
Starzmann
,
J.
,
White
,
A. J.
, and
Young
,
J. B.
,
2015
, “
A Comparison of Modeling Techniques for Polydispersed Droplet Spectra in Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042603
.
30.
Starzmann
,
J.
,
2016
, “
Results of the International Wet Steam Modelling Project
,”
Wet Steam Conference
, Prague, CZ, Sept. 12–14, 2016.
31.
ANSYS
,
2015
, “
ANSYS CFX-Solver Theory Guide, Release 16.2
,”
ANSYS
,
Cannonsburg, PA
.
32.
Schnerr
,
G. H.
,
Bohning
,
R.
,
Breitling
,
T.
, and
Jantzen
,
H. A.
,
1992
, “
Compressible Turbulent Boundary Layers With Heat Addition by Homogeneous Condensation
,”
AIAA J.
,
30
(
5
), pp.
1284
1289
.
33.
Binnie
,
A. M.
, and
Woods
,
M. W.
,
1938
, “
The Pressure Distribution in a Convergent-Divergent Steam Nozzle
,”
Proc. Inst. Mech. Eng.
,
138
(
1938
), pp.
229
266
.
34.
Binnie
,
A. M.
,
1950
, “
Notes on Gas Flow Through a Nozzle
,”
Math. Proc. Cambridge Philos. Soc.
,
46
(
03
), pp.
492
499
.
35.
Babinsky
,
H.
,
2015
, “
Boundary Layers in Nozzle Flows
,” private communication.
36.
Starzmann
,
J.
,
Hughes
,
F. R.
,
White
,
A. J.
,
Grübel
,
M.
, and
Vogt
,
D. M.
,
2016
, “
Numerical Investigation of Boundary Layers in Wet Steam Nozzles
,”
ASME
Paper No. GT2016-57598.
You do not currently have access to this content.