This paper deals with high-frequency (HF) thermoacoustic instabilities in swirl-stabilized gas turbine combustors. Driving mechanisms associated with periodic flame displacement and flame shape deformations are theoretically discussed, and corresponding flame transfer functions (FTF) are derived from first principles. These linear feedback models are then evaluated by means of a lab-scale swirl-stabilized combustor in combination with part one of this joint publication. For this purpose, the models are used to thermoacoustically characterize a complete set of operation points of this combustor facility. Specifically, growth rates of the first transversal modes are computed, and compared against experimentally obtained pressure amplitudes as an indicator for thermoacoustic stability. The characterization is based on a hybrid analysis approach relying on a frequency domain formulation of acoustic conservation equations, in which nonuniform temperature fields and distributed thermoacoustic source terms/flame transfer functions can be straightforwardly considered. The relative contribution of flame displacement and deformation driving mechanisms–i.e., their significance with respect to the total driving–is identified. Furthermore, promoting/inhibiting conditions for the occurrence of high frequency, transversal acoustic instabilities within swirl-stabilized gas turbine combustors are revealed.
Skip Nav Destination
Article navigation
July 2017
Research-Article
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
Tobias Hummel,
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany;
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Search for other works by this author on:
Frederik Berger,
Frederik Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Search for other works by this author on:
Michael Hertweck,
Michael Hertweck
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: hertweck@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: hertweck@td.mw.tum.de
Search for other works by this author on:
Bruno Schuermans,
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany;
Technische Universität München,
Garching 85748, Germany;
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Search for other works by this author on:
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany;
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Frederik Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Michael Hertweck
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: hertweck@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: hertweck@td.mw.tum.de
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany;
Technische Universität München,
Garching 85748, Germany;
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
1Corresponding author.
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 11, 2016; final manuscript received November 30, 2016; published online February 14, 2017. Editor: David Wisler.
J. Eng. Gas Turbines Power. Jul 2017, 139(7): 071502 (10 pages)
Published Online: February 14, 2017
Article history
Received:
July 11, 2016
Revised:
November 30, 2016
Citation
Hummel, T., Berger, F., Hertweck, M., Schuermans, B., and Sattelmayer, T. (February 14, 2017). "High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis." ASME. J. Eng. Gas Turbines Power. July 2017; 139(7): 071502. https://doi.org/10.1115/1.4035592
Download citation file:
Get Email Alerts
Cited By
An Experimental Study on a Dual-Fuel Generator Fueled With Diesel and Simulated Biogas
J. Eng. Gas Turbines Power (July 2022)
Experimental and Numerical Investigations Into the Blade Tip Phantom Cooling Performance
J. Eng. Gas Turbines Power (July 2022)
Experimental Investigation on Spray Evaporation and Dispersion Characteristics of Impinged Biodiesel-Butanol Blends
J. Eng. Gas Turbines Power (July 2022)
Related Articles
Low-Order Modeling of Nonlinear High-Frequency Transversal Thermoacoustic Oscillations in Gas Turbine Combustors
J. Eng. Gas Turbines Power (July,2017)
Reduced-Order Modeling of Aeroacoustic Systems for Stability Analyses of Thermoacoustically Noncompact Gas Turbine Combustors
J. Eng. Gas Turbines Power (May,2016)
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
J. Eng. Gas Turbines Power (July,2017)
Acoustic Resonances of an Industrial Gas Turbine Combustion System
J. Eng. Gas Turbines Power (October,2001)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries