This paper presents an efficient approach to diesel engine combustion simulation that integrates detailed chemical kinetics into a quasidimensional fuel spray model. The model combines a discrete spray parcel concept to calculate fuel-air mixing with a detailed primary reference fuel chemical kinetic mechanism to determine species concentrations and heat release in time. Comparison of predicted pressure, heat release, and emissions with data from diesel engine experiments reported in the literature shows good agreement overall, and suggests that spray combustion processes can be predictively modeled without calibration of empirical burn rate constants at a significantly lower computational cost than standard multidimensional (CFD) tools.
Issue Section:
Gas Turbines: Combustion, Fuels, and Emissions
Keywords:
Combustion,
Computational,
Engines,
Fuel combustion,
Internal combustion engines,
Modeling,
Sprays,
Thermodynamics
Topics:
Chemical kinetics,
Combustion,
Cylinders,
Engines,
Fuels,
Sprays,
Temperature,
Pressure,
Turbulence,
Emissions,
Modeling,
Heat
References
1.
Shi
, Y.
, Ge
, H.
, and Reitz
, R.
, 2010
, Computational Optimization of Internal Combustion Engines
, Springer-Verlag
, London
.2.
Hiroyasu
, H.
, and Kadota
, T.
, 1976
, “Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines
,” SAE
Technical Paper No. 760129.3.
Hiroyasu
, H.
, Kadota
, T.
, and Arai
, M.
, 1983
, “Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions—Part I: Combustion Modeling
,” Bull. JSME
, 26
(214
), pp. 569
–575
.4.
Hiroyasu
, H.
, and Kadota
, T.
, 1983
, “Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions—Part 2: Computational Procedure and Parametric Study
,” Bull. JSME
, 26
(214
), pp. 576
–583
.5.
Ranz
, W. E.
, and Marshall
, W. R.
, 1952
, “Evaporation From Drops
,” Chem. Eng. Prog.
, 48
(3
), pp. 141
–146
.6.
Borman
, G. L.
, and Johnson
, J. H.
, 1962
, “Unsteady Vaporization Histories and Trajectories of Fuel Drops Injected Into Swirling Air
,” SAE
Technical Paper No. 620271.7.
Elkotb
, M. M.
, 1982
, “Fuel Atomization for Spray Modelling
,” Prog. Energy Combust. Sci.
, 8
(1
), pp. 61
–91
.8.
Hiroyasu
, H.
, and Kadota
, T.
, 1974
, “Fuel Droplet Size Distribution in Diesel Combustion Chamber
,” SAE
Technical Paper No. 740715.9.
Arai
, M.
, Tabata
, M.
, Hiroyasu
, H.
, and Shimizu
, M.
, 1984
, “Disintegrating Process and Spray Characterisation of Fuel Jet Injected by a Diesel Nozzle
,” SAE
Technical Paper No. 840275.10.
Hiroyasu
, H.
, Arai
, M.
, and Tabata
, M.
, 1989
, “Empirical Equations for the Sauter Mean Diameter for a Diesel Spray
,” SAE
Technical Paper No. 890464.11.
Nishida
, K.
, and Hiroyasu
, H.
, 1989
, “Simplified Three-Dimensional Modeling of Mixture Formation and Combustion in a D.I. Diesel Engine
,” SAE
Technical Paper No. 890269.12.
Bazari
, L.
, 1992
, “A DI Diesel Combustion and Emission Predictive Capability for Use in Cycle Simulation
,” SAE
Technical Paper No. 920462.13.
Rakopoulos
, C. D.
, Hountalas
, D. T.
, Taklis
, G. N.
, and Tzanos
, E. I.
, 1995
, “Analysis of Combustion and Pollutants Formation in a Direct Injection Diesel Engine Using a Multi-Zone Model
,” Int. J. Energy Res.
, 19
(1
), pp. 63
–88
.14.
Jung
, D.
, and Assanis
, D.
, 2001
, “Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions
,” SAE
Technical Paper No. 2001-01-1246.15.
Kouremenos
, D. A.
, Rakopoulos
, C. D.
, and Hountalas
, D. T.
, 1997
, “Multi-Zone Combustion Modeling for the Prediction of Pollutants Emissions and Performance of DI Diesel Engines
,” SAE
Technical Paper No. 970635.16.
Assanis
, D. N.
, and Heywood
, J. B.
, 1986
, “Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies
,” SAE
Technical Paper No. 860329.17.
Jung
, D.
, and Assanis
, D.
, 2006
, “Quasidimensional Modeling of Direct Injection Diesel Engine Nitric Oxide, Soot, and Unburned Hydrocarbon Emissions
,” ASME J. Gas Turbines Power
, 128
(2), pp. 388
–396
.18.
Rezaei
, R.
, Eckert
, P.
, Seebode
, J.
, and Behnk
, K.
, 2012
, “Zero-Dimensional Modeling of Combustion and Heat Release in DI Diesel Engines
,” SAE
Technical Paper No. 2012-01-1065.19.
Ferguson
, C. R.
, and Kirkpatrick
, A. T.
, 2016
, Internal Combustion Engines: Applied Thermosciences
, 3rd ed., Wiley
, West Sussex, UK.20.
Kee
, R. J.
, Rupley
, F. M.
, and Miller
, J. A.
, 1989
, “Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Laboratories, Report No. SAND89-8009
.21.
Ra
, Y.
, and Reitz
, R.
, 2008
, “A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,” Combust. Flame
, 155
(4
), pp. 713
–738
.22.
Dec
, J. E.
, 1997
, “A Conceptual Model of DI Diesel Combustion Based on Laser Sheet Imaging
,” SAE
Technical Paper No. 970873.23.
Borman
, G. L.
, and Ragland
, K. W.
, 1998
, Combustion Engineering
, McGraw-Hill
, New York
.24.
Hiroyasu
, H.
, and Nishida
, H.
, 1989
, “Fuel Spray Trajectory and Dispersion in a D.I. Diesel Combustion Chamber
,” SAE
Technical Paper No. 890462.25.
Dent
, J. C.
, and Derham
, J. A.
, 1974
, “Air Motion in a Four-Stroke Direct Injection Diesel Engine
,” Proc. Inst. Mech. Eng.
, 188
(1), pp. 269–280.26.
Mansouri
, S.
, and Heywood
, J.
, 1980
, “Correlations for the Viscosity and Prandtl Number of Hydrocarbon-Air Combustion Products
,” Combust. Sci. Technol.
, 23
(5–6), pp. 251
–256
.27.
Heywood
, J. B.
, 1988
, Internal Combustion Engine Fundamentals
, McGraw-Hill
, New York
.28.
Han
, Z.
, Parrish
, S.
, Farrell
, P.
, and Reitz
, R.
, 1997
, “Modeling Atomization Processes of Pressure Swirl Hollow-Cone Fuel Sprays
,” Atomization Sprays
, 7
(6
), pp. 663
–684
.29.
Han
, Z.
, Reitz
, R.
, Claybaker
, P.
, Rutland
, C.
, Yang
, J.
, and Anderson
, R.
, 1996
, “Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-Injected Spark-Ignition Engine
,” SAE
Technical Paper No. 961192.30.
Chomiak
, J.
, and Karlsson
, A.
, 1996
, “Flame Liftoff in Diesel Sprays
,” Twenty-Sixth Symposium (International) on Combustion
, the Combustion Institute, pp. 2557
–2564
.31.
Kong
, S. C.
, Marriott
, C. D.
, and Reitz
, R. D.
, 2001
, “Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics With Multidimensional CFD
,” SAE
Technical Paper No. 2001-01-1026.32.
Kong
, S. C.
, Han
, Z.
, and Reitz
, R. D.
, 1995
, “The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation
,” SAE
Technical Paper No. 950278.33.
Lumley
, J. L.
, 1999
, Engines: An Introduction
, Cambridge University Press
, Cambridge, UK.34.
Kong
, S. C.
, Sun
, Y.
, and Reitz
, R. D.
, 2007
, “Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model
,” ASME J. Gas Turbines Power
, 129
(1
), pp. 245
–251
.35.
Smith
, G. P.
, Golden
, D. M.
, Frenklach
, M.
, Moriarty
, N.
, Eiteneer
, B.
, Goldenberg
, M.
, Bowman
, C.
, Hanson
, R.
, Song
, S.
, Gardiner
, W.
, Lissianski
, V.
, and Qin
, Z.
, 2002
, “GRI-Mech 3.0
,” accessed June 2016, http://www.me.berkeley.edu/gri_mech/36.
Borman
, G. L.
, 1987
, “Internal Combustion Engine Heat Transfer
,” Prog. Energy Combust. Sci.
, 13
(1
), pp. 1
–46
.37.
Hindmarsh
, A. C.
, Brown
, P. N.
, Grant
, K. E.
, Lee
, S. L.
, Serban
, R.
, Shumaker
, D. E.
, and Woodward
, C. S.
, 2005
, “SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,” ACM Trans. Math. Software
, 31
(3
), pp. 363
–396
.38.
Dobos
, A. P.
, 2016
, “Quasidimensional Modeling of Reacting Fuel Sprays Using Detailed Chemical Kinetics
,” Ph.D. thesis
, Colorado State University, Fort Collins, CO.39.
Siebers
, D.
, 1999
, “Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization
,” SAE
Technical Paper No. 1999-01-0528.40.
Campbell
, J.
, Gosman
, A.
, and Hardy
, G.
, 2008
, “Analysis of Premix Flame and Lift-Off in Diesel Spray Combustion Using Multi-Dimensional CFD
,” SAE
Technical Paper No. 2008-01-0968.41.
Hill
, P.
, and Ouellette
, P.
, 1999
, “Transient Turbulent Gaseous Fuel Jets for Diesel Engines
,” ASME J. Fluids Eng.
, 121
(1
), pp. 93
–101
.42.
Siebers
, D.
, and Higgins
, B.
, 2001
, “Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions
,” SAE
Technical Paper No. 2001-01-0530.43.
Wang
, H.
, Yao
, M.
, and Reitz
, R. D.
, 2013
, “Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations
,” Energy Fuels
, 27
(12
), pp. 7843
–7853
.44.
Nehmer
, D. A.
, and Reitz
, R. D.
, 1994
, “Measurement of the Effect of Injection Rate and Split Injections on Diesel Engine Soot and NOx Emissions
,” SAE
Technical Paper No. 940668.45.
Patterson
, M. A.
, Kong
, S. C.
, Hampson
, G. J.
, and Reitz
, R. D.
, 1994
, “Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions
,” SAE
Technical Paper No. 940523.46.
Woschni
, G.
, 1967
, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE
Technical Paper No. 670931.Copyright © 2017 by ASME
You do not currently have access to this content.